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Abstract The honeybee has a strong learning and mem-

ory ability, and is recognized as the best model organism

for studying the neurobiological basis of learning and

memory. In this study, we analyzed the gene expression

difference following proboscis extension response-based

olfactory learning in the A. mellifera using a tag-based

digital gene expression (DGE) method. We obtained about

5.71 and 5.65 million clean tags from the trained group and

untrained group, respectively. A total of 259 differentially

expressed genes were detected between these two samples,

with 30 genes up-regulated and 229 genes down-regulated

in trained group compared to the untrained group. These

results suggest that bees tend to actively suppress some

genes instead of activating previously silent genes after

olfactory learning. Our DGE data provide comprehensive

gene expression information for olfactory learning, which

will facilitate our understanding of the molecular mecha-

nism of honey bee learning and memory.
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Introduction

Honeybee is an important model organism for learning and

memory research. They not only have a good learning and

memory ability to color [1], pattern [2] and odor [3] of the

target, but also to landmarks and time mode [4]. Moreover,

the honeybee can also form a concept of the visual object

[5] and discriminate landmarks [6], form long-term mem-

ory of them and optimize the flight path based on specific

conditions [7]. Recent studies show that they can even

generate a memory of the order of some of the tasks, and

know what to do and when [8].

Honeybee has a strong olfactory learning ability. They

learn odor through olfactory receptor cell distributed on its

antenna, change these odor stimuli into chemical signal and

finally transfer them into the mushroom body [9]. In 1961,

Takeda for the first time developed the proboscis extension

response (PER) experiment in the honeybee by pairing an

odor stimulus with a sucrose reward [10]. This method has

been gradually improved as a classical experiment model

for olfactory learning [11–13].

Although much research on learning and memory has

been conducted in the honeybee, the underlying molecular

mechanism is still unclear, especially for the olfactory

learning and memory. Up to now, only a few genes are

reported to be involved in the learning and memory of

honeybee [14, 15]. Using RNAi, Fiala (1999) [14] found

that knockdown of PKA activity causes an impairment of

long-term memory retention 24 h after training. It suggests

that PKA contributes to the induction of a long-term

memory 24 h after training when activated during learning.

By injecting antagonists, Dacher (2008) [15] found that

nicotinic receptors and NO-synthase are specifically

involved in long-term memory. Besides these genes, the

homologues of several genes reported to be related to
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learning and memory in other organisms have been cloned

in A. mellifera, including adenylyl cyclase [16], CREB (the

key factor for learning and memory) [17], AmGluRA (one

member of the G-protein-coupled metabotropic glutamate

receptors) [18], Amtyr (one member of the tyramine

receptor) [19] and a PKA catalytic subunit [20], all these

genes are speculated to be involved in learning and mem-

ory in the honeybee. Despite of these results, genes and

pathways involved in learning and memory in honeybee

are far from clear.

DGE is based on the high-throughput second generation

sequencing technologies. It is a tag-based transcriptome

sequencing approach where short raw tags are generated. In

this method, a 21 bp (specific markers of the gene) tag was

obtained from the 30 end of each mRNA molecules using

endonuclease; and then a lot of the tag sequences were

produced by high-throughput sequencing, the number of

different tag sequences represents the expression level of

corresponding genes. The expression level of virtually all

genes in the sample is measured by counting the number of

individual mRNA molecules produced from each gene.

DGE protocol is suitable and affordable for comparative

gene profiling without compromise and potential bias. This

technology has been used in transcriptome profiling studies

for various applications, including cellular development,

cancer, and immune defence of various organisms [21–23].

In this study, we adopted the DGE approach to identify

genes involved in honeybee olfactory learning and memory

at the genome wide level.

Materials and methods

Insect

The A. mellifera were sampled from Honeybee Research

Institute, Jiangxi Agricultural University, China. One col-

ony was setup with headed by an artificially inseminated

queen. The queen received semen from a single drone

[single drone inseminated (SDI)]. This technique ensured a

higher genetic similarity among the workers, which should

increase the signal to noise ratio when searching for gene

expression differences. Newly emerged bees from SDI

queen were used in this experiment. The bees were gath-

ered and breed in a rectangle box with 1 M sucrose. After

1 week they were collected from the box for experiment.

PER experiment

The PER experiment began in the morning of the eighth

day. The experiment procedure was designed mainly by

consulting that reported by Letzkus [24]. The bees were

collected from the above mentioned boxes and randomly

assigned into two groups, the trained group and untrained

(control) group. The bees were briefly immobilized on ice

for 5 min. Then, each bee was fixed in a metal tube with

thin strips of GAFFA tape so that the whole body was

immobilized but the two prolegs and head were free. Then,

the bees were fed with two to three drops of 1 M sugar

solution and let to recover in an incubator at a constant

temperature of 28 �C.

In the evening of that day, the bees were trained. For the

trained group, each bee was trained using lemon odor plus

1 M sucrose solution as the positive stimulus (reward) and

strawberry odor plus saturated saline as the negative

stimulus (punishment). These two stimuli were prepared by

dissolving 10 ll of lemon or strawberry essence in 3 ml

50 % sugar syrup. The bees were trained to discriminate

between these two different scents. During training, a

suction fan was placed behind the bees to ensure a constant

flow of odor during stimulus presentation and to quick

remove of any lingering odor traces before the next bee

was trained. Each trial consisted of a positive and a neg-

ative stimulus training. On the first trial, a droplet (about

5 ll) of positive stimulus was placed over the bee’s

antennae at about 1–2 cm from the antennae using a syr-

inge needle until the bee extended its proboscis and ate a

little drop of solution. If after 5 s the bee did not extend its

proboscis, we briefly touched the antennae with the stim-

ulus drop. Then, the same procedure was performed with

the negative stimulus, which was a scented (strawberry

odor) drop of salt water. Touching the antennae at the end

of this 5 s period was intended to cause the scented drop to

be associated with the unpleasant-tasting salt solution. Bees

extending their proboscis after touching the antennae

received a punishment in the form of the salt solution.

After training, the honeybees were fed 2–3 drops of 1 M

sugar solution and returned to the incubator for overnight

storage. Three trials with an interval of 5 min were given.

Retention tests were carried out in the morning and

evening of the subsequent 2 days after the training. The

order for giving the stimuli during the test was reversed

with respect to that given in the training. That is, during the

tests, the negative stimulus was offered first, then, positive

stimulus. As in training, the stimulus droplet was placed

over the antennae of the bee at a distance of 1–2 cm for 5 s,

without touching the antennae. Each bee was tested three

trials with an interval of 5 min in every morning and

evening. A total of 4 retention tests were performed before

sampling. In the evening of the third day, after completion

of the tests, the heads of the trained bees that have a good

performance in all the four retention tests as well as those

of untrained bees (control group) were sampled and stored

in liquid nitrogen.
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Digital gene expression (DGE) library preparation

and sequencing

To construct DGE library, the brain was dissect from the

head of the trained group and untrained group (control)

samples, and total RNA was extracted using the SV Total

RNA isolation System (Promega, USA) according to the

manufacturer’s protocol. Then, the libraries were con-

structed using the Illumina gene expression sample prep kit

according to its protocol. Briefly, poly(A) ? RNA was

purified from 6 lg of total RNA using oligo(dT) magnetic

beads. First strand cDNA were directly synthesized on the

poly(A) ? RNA-bound beads primed by oligo(dT), then,

the second strand were synthesized and digested with

NlaIII, which recognize the CATG site. The digested

cDNA fragments containing 30 ends were purified from the

magnetic beads, and then the Illumina adaptor1 was added

to the 50 ends of these cDNA fragments. Then these frag-

ments were further digested by another endonuclease

MmeI, which recognizes the junction of the Illumina

adaptor1 and the CATG site, and cut at 17 bp downstream

of CATG site to produce 21 bp tags containing the adap-

tor1 sequence. After remove the cleaved 30 end sequences

with magnetic beads precipitation, the Illumina adaptor2

was ligated to the 30 ends of the tags to create a tag library

containing a lot of tags with different adaptors on both

ends. Then, the library was amplified by PCR for 15 cycles,

PCR products were segregated on 6 % PAGE gel electro-

phoresis, and the 95 bp fragments were chosen and purified

for sequencing. The double-strand DNA fragments were

denatured and the single-stranded molecules were fixed

onto the Illumina sequencing chip for sequencing. Each

tunnel of chip (flowcell) generated millions of raw tags

with a length of 49 nt.

Analysis and mapping of DGE tags to reference gene

and genome data

Sequencing-received raw image data was transformed by

base calling into sequence data and stored in fastq format.

Raw sequences were filtered by the following steps: 1,

remove adaptor sequence (since tags are only 21 nt long

while the sequencing reads are 49 nt long, raw sequences are

with 30 adaptor sequences); 2, remove empty tags (no tag

sequence between the adaptors); 3, remove low quality tags

(tags with unknown nucleotide ‘‘N’’); 4, remove tags with

only one copy number (which might result from sequencing

errors); 5, remove tags which are too long or too short. After

filtration, the remained clean tags containing CATG and

21 nt tag sequences. The clean tags were deposited in the

NCBI sequence read archive (SRA057123).

Before mapping, two tag libraries containing all the pos-

sible CATG ? 17 nt tag sequences was respectively created

using all the available mRNA sequences and genome

sequences of the A. mellifera downloaded from Genbank

database (ftp://ftp.ncbi.nih.gov/genomes/Apis_mellifera/

Assembled_chromosomes/seq/). Then all the clean tags

were first mapped to the tag database of reference mRNA

sequences with only one nucleotide mismatch is allowed.

Clean tags that mapped to multiple genes were filtered. The

remained clean tags were designed as unambiguous clean

tags. For gene expression analysis, the number of unam-

biguous clean tags for each gene was calculated and nor-

malized to TPM (number of transcripts per million clean

tags). Those tags that can’t be mapped to any gene in the tag

database of mRNA sequences were continuing mapped to

the tag database of reference genome sequence.

Identification of differentially expressed genes

To identify the differentially expressed genes between

trained and untrained libraries, a rigorous statistical algo-

rithm was developed by consulting the method described

by Audic [25], to statistically analyze the tag frequency in

each DGE library. The false discovery rate (FDR) was used

to determine the threshold P value (corresponding to the

P value in differential gene expression detection) in mul-

tiple tests. A FDR \ 0.001 and an absolute E value of the

log2 ratio [ 1 were used as the threshold to determine

significant differences in gene expression. The identified

differentially expressed genes were used for GO and

KEGG pathway analysis.

GO enrichment analysis of functional significance

applies hypergeometric test to map all differentially

expressed genes to terms in GO database, looking for

significantly enriched GO terms in differentially expressed

genes comparing to the genome background. The calcu-

lating formula is:

P ¼ 1�
Xm�1

i¼0

M
i

� �
N �M
n� i

� �

N
n

� �

where N is the number of all genes with GO annotation; n is the

number of differentially expressed genes in N; M is the

number of all genes that are annotated to the certain GO terms;

m is the number of differentially expressed genes in M.

KEGG pathway enrichment analysis identifies signifi-

cantly enriched metabolic pathways or signal transduction

pathways in differentially expressed genes comparing with

the whole genome background. The calculating formula is

the same as that in GO analysis.
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Results and discussion

DGE library sequencing

Apis mellifera trained and untrained DGE libraries were

constructed and sequenced, generating approximately 5.81

and 5.77 million raw tags in each library. After filtering the

low quality tags, the total number of clean tags in each

library were about 5.71 and 5.65 million (Table 1), and the

percentage of clean tags among the raw tags in each library

were 98.19 and 98.00 % (Fig. 1). Among the clean tags,

the number of sequences that could be mapped to reference

genes were about 2.10 and 2.19 million, and the percentage

of these clean tags were 36.77 and 38.67 % in two libraries.

The numbers of sequences that could be mapped to genome

were about 1.49 and 1.78 million, occupying 26.15 and

31.39 % of the clean tags. In each library, those tags with

copy numbers of more than 100 showed percentages of

greater than 78 % among the clean tags, but their distri-

bution of distinct clean tags did not exceed 7.5 %. In

contrast, those tags with copy numbers between 2 and 5

showed a broad distribution (more than 50 %) of distinct

clean tags (Fig. 2).

Saturation analysis of sequencing

Saturation analysis was performed to check whether the

number of detected genes increased with the increase of the

sequencing amount (total tag number). As showed in

Fig. 3, when sequencing amount of the two DGE libraries

reaches near 1 M, the number of detected genes almost

ceases to increase. It suggested that the sequencing results

were saturated since the obtained clean tags in each library

were about 5.71 and 5.65 million.

Mapping sequences to the reference genes

To reveal the molecular events behind DGE profiles, we

mapped the tag sequences of the two DGE libraries to gene

reference database. This reference database contains

11,736 distinct mRNA sequences with 65,418 unambigu-

ous reference tags. Among the 96,328 and 105,909 distinct

clean tags generated from the Illumina sequencing of the

two libraries, 38237 and 40,365 distinct tags were mapped

to one or multiple genes in the reference database

(Table 1). Tags mapped to single unique sequence are the

most critical subset of the DGE libraries as they can

Table 1 Statistics of DGE

sequencing
Summary Trained Untrained

Raw data Total 5812242 5769851

Raw data distinct tag 197187 217900

Clean tag Total number 5706950 5654589

Clean tag Distinct tag number 96328 105909

All tag mapping to gene Total number 2098401 2186900

All tag mapping to gene Total % of clean tag 36.77 % 38.67 %

All tag mapping to gene Distinct tag number 38237 40365

All tag mapping to gene Distinct tag % of clean tag 39.69 % 38.11 %

Unambiguous tag mapping to gene Total number 1857673 1935824

Unambiguous tag mapping to gene Total % of clean tag 32.55 % 34.23 %

Unambiguous tag mapping to gene Distinct tag number 35493 37471

Unambiguous tag mapping to gene Distinct tag % of clean tag 36.85 % 35.38 %

All tag-mapped genes Number 8918 9035

All tag-mapped genes % of ref genes 75.99 % 76.99 %

Unambiguous Tag-mapped Genes Number 7887 8001

Unambiguous tag-mapped genes % of ref genes 67.2 % 68.17 %

Mapping to genome Total number 1492161 1775102

Mapping to genome Total % of clean tag 26.15 % 31.39 %

Mapping to genome Distinct tag number 45216 51153

Mapping to genome Distinct tag % of clean tag 46.94 % 48.3 %

Unknown tag Total number 2116388 1692587

Unknown tag Total % of clean tag 37.08 % 29.93 %

Unknown Tag Distinct tag number 12875 14391

Unknown tag Distinct tag % of clean tag 13.37 % 13.59 %
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explicitly identify a transcript. In the trained and

untrained libraries, 36.85 and 35.38 % of distinct clean

tags were mapped to unique sequence, of them, about

60 % mapped to sense strand of the genes, and 40 %

mapped to antisense strand of the genes (Fig. 4). There

were 13.37 and 13.59 % of the total clean tags corre-

sponding to 37.08 and 29.93 % of the distinct clean tags

unable to be mapped to any gene. Up to 67.2 % (7,887)

Tag Classification
Tags Containing N (6965, 0.12%)
Only adaptors (223, 0.00%)
Copy Number < 2 (108074, 1.87%)
Clean tags (5654589, 98.00%)

Distribution of Total Tags
Tag Classification

Tags Containing N (8159, 0.14%)
Only adaptors (100, 0.00%)
Copy Number < 2 (97033, 1.67%)
Clean tags (5706950, 98.19%)

Trained

Untrained

Tag Classification
Tags Containing N (3742, 1.72%)
Only adaptors (175, 0.08%)
Copy Number < 2 (108074, 49.60%)
Clean tags (105909, 48.60%)

Distribution of Distinct Tags
Tag Classification

Tags Containing N (3752, 1.90%)
Only adaptors (74, 0.04%)
Copy Number < 2 (97033, 49.21%)
Clean tags (96328, 48.85%)

Fig. 1 Distribution of total tags

and distinct tags over different

tag abundance categories in

each sample. The numbers and

percentage of tags containing N,

empty tags with adaptor only,

tags with copy number \2 and

clean tags, are shown

Tag Copy Number

[2, 5] (154160, 2.73%)

[6, 10] (118896, 2.10%)

[11, 20] (172804, 3.06%)

[21, 50] (364800, 6.45%)

[51, 100] (432238, 7.64%)

> 100 (4411691, 78.02%)

Distribution of Total Clean Tags

Tag Copy Number

[2, 5] (141352, 2.48%)

[6, 10] (108369, 1.90%)

[11, 20] (160819, 2.82%)

[21, 50] (330726, 5.80%)

[51, 100] (380696, 6.67%)

> 100 (4584988, 80.34%)

Tag Copy Number

[2, 5] (53326, 50.35%)

[6, 10] (15588, 14.72%)

[11, 20] (11749, 11.09%)

[21, 50] (11312, 10.68%)

[51, 100] (6058, 5.72%)

> 100 (7876, 7.44%)

Distribution of Distinct Clean Tags

Tag Copy Number

[2, 5] (48888, 50.75%)

[6, 10] (14213, 14.75%)

[11, 20] (10970, 11.39%)

[21, 50] (10267, 10.66%)

[51, 100] (5338, 5.54%)

> 100 (6652, 6.91%)

Trained

Untrained

Fig. 2 Distribution of total

clean tags and distinct clean tags

over different tag abundance

categories in each sample.

Numbers in the square brackets
indicate the range of copy

numbers for a specific category

of tags. For example, [2, 5]

means all the tags in this

category has 2–5 copies.

Numbers in the parentheses of

left and right graphs

respectively show the total copy

number of the clean tags and the

total types of clean tags in that

category

Fig. 3 Saturation analysis of clean tags. With the increase of total sequence number, the number of detected genes gradually ceased to increase
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and 68.17 % (8,001) of the genes could be unequivocally

identified by unique tag (Table 1).

Differentially expressed genes

To identify genes showing a significant change in expres-

sion between the trained and untrained bees, the differen-

tially expressed tags between these two libraries were

identified by an algorithm developed by Audic et al. [25].

Between trained and untrained libraries, a total of 259

differentially expressed genes were detected, with 30 up-

regulated genes and 229 down-regulated genes in trained

group compared to untrained group (Fig. 5, Supplementary

file 1). Of them, 89 genes annotated as ‘‘hypothetical

protein’’ or ‘‘uncharacterized protein’’, that is, they are

function unknown.

To understand the functions of these differentially

expressed genes, all the differentially expressed genes were

mapped to terms in GO database and compared with the

whole genome background. Of the 259 differentially

expressed genes, 121 genes have a GO ID and can be

categorized into a total of 399 functional groups in three

Tag Classification

PM(Sense) 1 tag->1 gene (19567, 18.48%)

PM(Sense) 1 tag->n gene (1298, 1.23%)

1 MM(Sense) 1 tag->1 gene (2832, 2.67%)

1 MM(Sense) 1 tag->n gene (495, 0.47%)

PM(AntiSense) 1 tag->1 gene (13928, 13.15%)

PM(AntiSense) 1 tag->n gene (948, 0.90%)

1 MM(AntiSense) 1 tag->1 gene (1144, 1.08%)

1 MM(AntiSense) 1 tag->n gene (153, 0.14%)

PM Genome 1 tag->1 position (42237, 39.88%)

PM Genome 1 tag->n position (1277, 1.21%)

1 MM Genome 1 tag->1 position (6316, 5.96%)

1 MM Genome 1 tag->n position (1323, 1.25%)

Unknown Tag (14391, 13.59%)
(PM:Perfect Match)
(MM:Miss Match)

Tag Classification

PM(Sense) 1 tag->1 gene (1533148, 27.11%)

PM(Sense) 1 tag->n gene (183999, 3.25%)

1 MM(Sense) 1 tag->1 gene (89380, 1.58%)

1 MM(Sense) 1 tag->n gene (29602, 0.52%)

PM(AntiSense) 1 tag->1 gene (280940, 4.97%)

PM(AntiSense) 1 tag->n gene (32002, 0.57%)

1 MM(AntiSense) 1 tag->1 gene (32356, 0.57%)

1 MM(AntiSense) 1 tag->n gene (5473, 0.10%)

PM Genome 1 tag->1 position (1542015, 27.27%)

PM Genome 1 tag->n position (82554, 1.46%)

1 MM Genome 1 tag->1 position (128280, 2.27%)

1 MM Genome 1 tag->n position (22253, 0.39%)

Unknown Tag (1692587, 29.93%)
(PM:Perfect Match)
(MM:Miss Match)

Mapping of Distinct Clean Tags
Tag Classification

PM(Sense) 1 tag->1 gene (18950, 19.67%)

PM(Sense) 1 tag->n gene (1274, 1.32%)

1 MM(Sense) 1 tag->1 gene (2636, 2.74%)

1 MM(Sense) 1 tag->n gene (455, 0.47%)

PM(AntiSense) 1 tag->1 gene (12862, 13.35%)

PM(AntiSense) 1 tag->n gene (885, 0.92%)

1 MM(AntiSense) 1 tag->1 gene (1045, 1.08%)

1 MM(AntiSense) 1 tag->n gene (130, 0.13%)

PM Genome 1 tag->1 position (37501, 38.93%)

PM Genome 1 tag->n position (1153, 1.20%)

1 MM Genome 1 tag->1 position (5390, 5.60%)

1 MM Genome 1 tag->n position (1172, 1.22%)

Unknown Tag (12875, 13.37%)
(PM:Perfect Match)
(MM:Miss Match)

Mapping of Total Clean Tags
Tag Classification

PM(Sense) 1 tag->1 gene (1503678, 26.35%)

PM(Sense) 1 tag->n gene (176737, 3.10%)

1 MM(Sense) 1 tag->1 gene (78165, 1.37%)

1 MM(Sense) 1 tag->n gene (30483, 0.53%)

PM(AntiSense) 1 tag->1 gene (248037, 4.35%)

PM(AntiSense) 1 tag->n gene (28435, 0.50%)

1 MM(AntiSense) 1 tag->1 gene (27793, 0.49%)

1 MM(AntiSense) 1 tag->n gene (5073, 0.09%)

PM Genome 1 tag->1 position (1278936, 22.41%)

PM Genome 1 tag->n position (89850, 1.57%)

1 MM Genome 1 tag->1 position (105373, 1.85%)

1 MM Genome 1 tag->n position (18002, 0.32%)

Unknown Tag (2116388, 37.08%)
(PM:Perfect Match)
(MM:Miss Match)

Trained

Untrained

Fig. 4 Distribution of tags on genes and genome of Apis mellifera.

PM(Sense) perfect match to gene (sense), 1 tag ? 1 gene one tag

match to one gene, 1 tag ? n gene one tag match to more than one

gene, 1 MM(Sense) match to gene (sense) with 1 bp mismatch,

PM(AntiSense) perfect match to anti-sense gene, 1 MM(Anti-Sense)

match to anti-sense gene with 1 bp mismatch, PM Genome perfect

match to genome, 1 MM Genome match to genome with 1 bp

mismatch, Unknown Tag not match to gene (sense and anti-sense) or

genome

−2 −1 0 1 2 3

−
2

−
1

0
1

2
3

log10 (Untrained<TPM>)

lo
g1

0 
(T

ra
in

ed
<

T
P

M
>

)

FDR <=  0.001 AND |log2Ratio| >= 1
up−regulated genes
down−regulated genes
Not DEGs

Fig. 5 Differentially expressed genes between trained and untrained

groups. The red part represents those genes up-regulated in trained group

compared to untrained group. The green part shows those genes down-

regulated in trained group. The blue part shows those genes without

expression difference between these two samples. (Color figure online)
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main categories (Additional file 2). In each of the three

main categories (biological process, cellular component

and molecular function) of the GO classification, ‘‘cellular

process’’, ‘‘cell’’ and ‘‘binding’’ terms are dominant. While

compared to the whole genome background, no term was

significantly enriched (P value \ 0.05).

To further investigate the biochemical pathways these

differentially expressed genes were involved in, we map-

ped all the differentially expressed genes to terms in KEGG

database and compared with the whole genome back-

ground. Of the 259 differentially expressed genes, 177

genes had a KO ID and could be categorized into 132

pathways (Supplementary file 3). While compared to the

whole genome background, no term was significantly

enriched (Q value \ 0.05).

In these differentially expressed genes, we found two

odorant binding proteins (obps), obp3 (NM_001040221.1),

obp17 (NM_001011583.1), and a chemosensory protein

(CSP3, NM_001011583.1) showing expression difference

during olfactory learning. Of them, obp3 and CSP3 were

up-regulated after learning, while Obp17 was down regu-

lated. obps are water-soluble small proteins in the lymph of

the olfactory neurons with a high concentration [26]. When

the odor molecules entered into the receptors from the

micropores distributed on its surface, the obps combined

with hydrophobic odorant molecules, and transported them

to the sensory receptors distributed on the dendritic mem-

brane of the olfactory nerve. The function of chemosensory

proteins are feeling the environment of chemical stimula-

tion and carrying non-volatile odor molecules to reach the

corresponding receptor in chemoreceptors [27]. By now,

there are no reports about the involvement of these genes in

learning and memory storage. The up-regulation of these

genes may be due to direct stimulation of the odor mole-

cules rather than long-term memory for odors.

We found several neurotransmitter receptors showing

expression difference. They are octopamine receptor (OA1,

NM_001011565.1), muscarinic acetylcholine receptor (XM_

395760.4), nicotinic acetylcholine receptor alpha6 subunit

(nAChRa6, NM_001080095.1), gamma-aminobutyric acid

receptor subunit beta (GABAA beta, XM_001120292.2).

Octopamine is an important neurotransmitter in the central

nervous system. In A. mellifera, one octopamine receptor was

reported to be involved in appetitive learning [28]. Acetyl-

choline (acetylcholine, ACh) is another kind of important

neurotransmitter. According to pharmacological response

property difference to the natural alkaloids, muscarinic and

nicotinic, the acetylcholine receptor can be divided into mus-

carinic receptors and nicotinic receptors [29]. These two types

of receptors are widely distributed in the central and peripheral

nervous system. The nAChR has been considered to be

involved in cognition for a long time [30, 31]. The mAChR is a

chemical (ligand)-gated ion channel protein, its activation can

lead to cation flow, causing membrane depolarization. In recent

years, a growing number of studies have shown that mAChR

also plays an important role in learning and memory [32, 33].

GABA is the most important and most abundant inhibitory

neurotransmitter in the mammalian central neural system [34].

One important role of GABA receptors is to modulate different

forms of anxiety, fears, phobias or depression. Besides, they

also play a key role in cognitive processes, including memory

formation and consolidation [35].

We found that two synaptic proteins, synaptojanin

(XM_395173.4), syntaxin binding protein 5 (XM_391820.4)

and a neuropeptide, TWKSPDIVIRFa-containing neuro-

peptide (XM_001120453.2), are differentially expressed

during learning. Synaptojanin is a polyphosphoinositide

phosphatase that mediates phosphatidylinositol (4,5)-bis-

phosphate [PI(4,5)P2] dephosphorlation [36, 37]. Recent

research showed that it regulates the postsynaptic AMPA

responses by triggering internalization of AMPA receptors

[38]. AMPA receptors are responsible for most of the fast

excitatory synaptic transmission, alterations in AMPA

receptor number and/or function at the synapse are likely to

play an important role in synaptic plasticity and in learning

and memory [39]. In mouse models of Down’s syndrome,

over expression of synaptojanin perturb PtdIns(4,5)P2

homeostasis at the synapse and result in brain dysfunction

and cognitive disabilities [40]. Syntaxin binding protein 5

(tomosyn) is an important component in the neurotransmitter

release process where it stimulates the formation of soluble

N-ethylmaleimide-sensitive factor attachment receptor

complex in nerve terminals [41]. In drosophila, Syntaxin

binding protein 5 is required for cAMP-dependent associa-

tive odor learning [42]. Neuropeptides are by far the largest

group of messenger molecules in the brain [43]. It has

increasingly been recognized as regulators of ‘cognitive’

pathways in the brain [44, 45]. In mammalian, a number of

neuropeptides have been implicated in learning and memory

processing via a direct or indirect modulation of excitatory/

inhibitory systems in the hippocampal formation [46].

In conclusion, through DGE analysis, we obtained a

total of 259 differentially expressed genes after olfactory

learning, some of them were reported to be important genes

involved in the olfactory learning and memory, such as

octopamine receptor. These genes provide important clues

for future olfactory learning and memory study in honey-

bee. As far as we know, this is the first research about the

learning and memory related genes in honeybee at the

genome wide level, but it still requires much work to fully

understand the molecular mechanism of learning and

memory in honeybee.
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