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As a phoretic parasite and virus vector, the mite Varroa destructor and the associated

Deformed wing virus (DWV) form a lethal combination to the honey bee, Apis mellifera.

Routine acaricide treatment has been reported to reduce the diversity of mites and

select for tolerance against these treatments. Further, different DWV strains face selective

pressures when transmitted via mites. In this study, the haplotypes of Varroa mites

and associated DWV variants were quantified using long reads. A single haplotype

dominated the mite mitochondrial gene cytochrome oxidase subunit I, reflecting an

ancient bottleneck. However, highly polymorphic genes were present across the mite

genome, suggesting the diversity of mites could be actively maintained at a regional level.

DWV detected in both mites and honey bees show a dominant variant with only a few

low-frequency alternate haplotypes. The relative abundances of DWV haplotypes isolated

from honey bees and mites were highly consistent, suggesting that some variants are

favored by ongoing selection.
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INTRODUCTION

Varroa destructor is a an ectoparasitic mite of honey bees, which feeds on honey bee fat bodies and
hemocytes (1). During the phoretic stage, mites parasitize adult honey bees and disperse among
host individuals and colonies through body contact and host drifting (2, 3). The reproductive phase
starts with locating a suitable larval cell. The female mite hides in the brood cell just before it is
capped with wax and initiates vitellogenin production. Within the capped cell, the female mite
first lays an unfertilized haploid egg that develops into a male, followed by a few fertilized diploid
eggs that develop into females (4). The female and male offspring mate within the capped cell,
substantially reducing heterozygosity (5). Crossing of mite lineages only occurs when the colony is
heavily infected and two or more female mites reproduce within the same brood cell (6). Thus
far, the mite mitochondria gene cytochrome c oxidase subunit 1 (COX1) was used to identify
haplotypes, where only two were found in European honey bees (7).

In addition to the destructive feeding on fat bodies (the most important immune-
response tissues in honey bees), mites also transmit several RNA viruses. Among
these viruses, Deformed wing virus (DWV), when combined with the mites, critically
proliferates in all developmental stages of honey bees (8, 9). DWV originates
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from European honey bees, but was selected for and vectored by
the mite V. destructor (10). Currently, the dispersal and titer of
DWV in honey bee colonies heavily depends on V. destructor.
The presence of mites has altered the landscape of DWV strains,
in some cases leading to the emergence of dominant strains
(11). Acaricides are widely used to control mites, selecting for
resistant mite strains and arguably leading to founder effects that
reduce mite diversity (12). The aim of this study is to quantify
the current diversity of mites and associated DWV. In addition,
highly polymorphic loci are selected for haplotype construction.
Then the relative abundances of DWV haplotypes are quantified
in mites and honey bees to test for competition during the
proliferation in a controlled infestation assay.

MATERIALS AND METHODS

Mite Population
Mites (Varroa destructor) were collected in four honey bee
colonies (Apis mellifera), from the experimental apiary in Jiangxi
Agricultural University. All colonies were maintained within
one apiary. The colonies were 1 year old and had been treated
with Amitraz during the summer. Twenty mites were collected
from each of four honey bee colonies using the powdered sugar
method in Spring (13). The body surface of the mites was rinsed
with distilled water and twenty mites of each colony were pooled
for RNA extraction using TRIzol. One Pacbio Iso-Seq library
was prepared for each RNA pool to sequence in a SMRT cell. In
total, four Iso-Seq libraries were prepared and sequenced in four
SMRT cells.

Mite and DWV Haplotype Analysis
The long reads were aligned to the V. destructor genome
assembly (version V_des 3.0) using Minimap2 with default
transcript parameters (14). Single nucleotide variants (SNVs)
were identified using Longshot with minimal coverage of 20 (15).
The SNVs were further annotated with SNPeff (16). SNVs along
the contigs were analyzed with Pearson’s Chi-Squared test. To
analyze the haplotypes of the transcripts, the reads were aligned
to the protein coding sequences of the V. destructor genome
using Minimap2 with default parameters. The SNVs shared in
all four colonies were concatenated to form haplotypes using
SAM4WebLogo and summarized using Whatshap (15, 17, 18).

RNA reads that could not be aligned to the mite genome were
retrieved using Samtools and assigned tomicrobes using Kraken2
(16, 19). The results were viewed with Krona (20). The reads
assigned to Deformed wing virus (strain A) were extracted and
aligned to a reference DWV genome (NCBI Genome version
GCF000852585.1) with Minimap2. SNVs were predicted using
Longshot and the nucleotides at SNV positions were clipped
with SAM4WebLogo (13, 17, 21), which were concatenated
to form a haplotype for each long read. The distribution of
haplotypes among the colonies was analyzed with Pearson’s Chi-
Squared test, using R (22). Additionally, the reads were aligned to
DWV-A (GCF000852585.1), DWV-B (AY251269.2) and DWV-C
(CEND01000001.1) in parallel to quantify the relative abundance
of DWV variants associated with the mites using Minimap2
(13, 23, 24).

Transmission of DWV Haplotypes From
Mites to Bees
To further study the competition of DWV haplotypes in mites
and bees, a controlled mite infestation assay was performed.
Second-instar larvae were collected from honey bee frames
randomly selected from the colonies in the apiary. The larvae
were artificially reared to the pupal stage in 48-well microtiter
plates maintained in an incubator, with a temperature and
humidity setting of 34◦C, 70%RH, respectively (25).V. destructor
mites were collected from capped cells to minimize any physical
damage. During the pupation stage, one mite was transplanted
onto each pupa to form a paired infection group (N = 10). Pupae
without mites served as a control group to assess mortality due
to artificial rearing (N = 10). Pupae, and their associated mites,
were collected 4 days after infestation (Npupa = 5, Nmite = 5), as
well as the emerged adults (Npupa = 5, Nmite = 5). Total RNAwas
extracted from individual bees and mites with TransZol Up Plus
RNA kit (Transgen). cDNAwas synthesized using PrimeScriptTM

RT reagent Kit (Takara), with 1 µl gDNA Eraser L, 2 µl 5 ×

gDNA Eraser buffer, 5 µl RNase Free H2O and 2 µl total RNA
incubating at 42◦C for 2min. Additionally, 1 µl PrimeScript RT
Enzyme Mix I, 4 µl 5 × PrimeScript Buffer, 1 µl RT Primer Mix
and 4 µl RNase Free H2O were added to the reaction for 37◦C,
15min, 85◦C 5min. The cDNA was stored at−20◦C.

Based on the above SNV analysis of the long reads, the
PCR fragments containing the highly dense and variable
loci at the 218, 325, 555, and 567th nucleotides were
amplified in both mites and bees using customized primers
(DWV_h_5’: ACGCGCGCGATAATGAGT, DWV_h_3′:
GATCTCTGGTTTTGCCTGCAC). A 20 µl amplification
reaction system was as follows: 1 µl 5′ primer, 1 µl 3′ primer, 10
µl 2x Tag PCR StarMix, 3 µl DEPC water, 5 µl RNA template.
The reaction program consisted of 95◦C 5min, 95◦C 10 s, 58◦C
30 s, for 40 cycles. The 443 bp PCR product was purified and
recovered from an agarose gel using a column DNA back kit
(TIANDZ). PCR products were sequenced in both directions
using the Illumina Nova 6,000 platform. These paired reads
were joined and then aligned to the DWV CDS region using
Minimap2 (13). The nucleotides at SNV positions (at 218, 325,
555, and 567th nucleotides) was clipped with SAM4WebLogo
to form haplotypes (17). The distribution of haplotypes were
analyzed with Pearson’s Chi-square test, using R (22). The
transmission of haplotypes was visualized using Circlize package
in R (26).

RESULTS

Dominant Haplotype in Mites
On average, over 75 million long reads were generated from
a SMRT cell, with a mean length of 3.5Kbp (over 150x
of the mite transcriptome) (Supplementary Table 1). In total,
4,633, 5,683, 4,214, and 4,803 biallelic SNVs were identified
from four honey bee colonies, out of which 892 SNVs were
shared (Figure 1). The number of synonymous and non-
synonymous SNVs was not significantly different among the
four honey bee colonies (Pearson’s Chi-square test, P > 0.05).
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FIGURE 1 | Venn diagram of the SNVs and genes. (A) Venn diagram of the synonymous and non-synonymous SNVs among the mites of four honey bee colonies.

Overall, 892 SNVs were shared among the four colonies. The number of synonymous SNV was significantly higher than random for each honey bee colony (Pearson’s

Chi-square test, P < 0.001). (B) Venn diagram of the genes with non-synonymous SNVs among the mites of four honey bee colonies. Overall, 437 genes were shared

in all four colonies, which was again significantly higher than random (Pearson’s Chi-square test, P < 0.001).

FIGURE 2 | Cumulative frequency histogram of haplotypes. (A) Frequency of V. destructor haplotypes. Haplotypes were constructed on five SNVs of the most

diversified transcript XP_22662619.1 at 4920, 4947, 4957, 4980, and 5076th nucleotide. In total, 30 haplotypes were identified, and 25 haplotypes were shared at

least in two colonies. The four colonies shared dominant haplotypes (VD-1 to VD-5) and a few low frequency haplotypes (VD-others). VD represents V. destructor

dominant haplotype. (B) Frequency of DWV haplotypes. Haplotypes were constructed on three SNVs at the 1809, 1938, and 1977th nucleotide. In total, 11

haplotypes were identified, and 8 haplotypes were shared at least in two colonies. Three haplotypes were shared among the four honey bee colonies, which

accounted for 70% of total haplotypes. DD represents DWV dominant haplotype.

On average, 5.25 SNVs were phased (assigned variants to
the maternal or paternal chromosome) in a haplotype block
(Supplementary Table 2). The mitochondrial genes cytochrome
c oxidase subunit I (NP_758874.1), cytochrome c oxidase
subunit III (NP_758878.1), and cytochrome b (NP_758884.1)
were highly expressed. However, SNVs were not found in
either of the above genes, nor for the mitochondrial gene
cytochrome c (XP_022658338.1). The transcript activating signal
cointegrator 1 complex subunit 3-like (ASCC3, XP_022662619.1)
showed the highest number of SNVs (146 SNVs) in all four
colonies. As 20 mites were pooled, a maximum of 40 haplotypes

could be identified from this gene in each colony. In theory,
6 biallelic SNVs (26 = 64) were sufficient to distinguish
between the 40 haplotypes. Two SNVs at the 3’ end of the
transcript XP_022662619.1, with the highest coverage, were
used as an anchor to construct haplotypes. One SNV was
added at a time, until the observed number of haplotypes
was less than the expected ones. In total, 30 haplotypes
were identified using 5 SNVs and 12 haplotypes were shared
among the colonies (Supplementary Figure 1). Surprisingly, a
dominant haplotype (VD-1) was found in all four colonies
(Figure 2A).
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Dominant Haplotype of Deformed Wing
Virus in Mites
On average, 525,922 reads aligned to microbes associated with
mites. Among the DWV variants, 95.41 ± 2.02% (Mean ±

SD) reads were assigned to DWV-A, which was orders of
magnitude higher than DWV-B (4.58 ± 2.01%) and DWV-
C (0.02 ± 0.01%). In total, 381 SNVs were identified from
DWV, among which 11 SNVs were commonly shared among
the four colonies (at 218, 325, 555, 567, 615, 693, 780,
1809, 1938, 1977, and 8676th nucleotide, respectively) and
266 SNVs were colony specific. The proportion of shared
SNVs was significantly higher in mites compared with DWV
along the genome (Pearson’s Chi-square test, P < 0.05).
Three commonly shared SNVs at the 1809, 1938, and 1977th

nucleotides were used to construct the haplotypes. In total, 11
haplotypes were identified, and 3 haplotypes dominated over
70% of total haplotype counts in all four colonies (Figure 2B;
Supplementary Figure 2).

Transmission of DWV Haplotype From
Mites to Bees
To determine whether the dominant DWV haplotypes in bees
originated from high virus abundance in mites, or by viral
competition during proliferation, a controlled mite infestation
assay was performed. As noted above, for this experiment
larvae were reared in a laboratory incubatory until pupation.
All larvae survived this incubation. Then, each experimental
pupal sample was paired with a Varroa mite. In the control
group (no mite), DWV was not detected. In the treatment
groups, 2.2 million PCR fragments were sequenced. The 218,
325, 555, and 567th nucleotides were identified as having
the highest diversity, on average, in the DWV genome.
Surprisingly, two haplotypes accounted for 95% of DWV in
both the mites and the bees. By analyzing the paired pupae
and mite, the relative abundance of the DWV haplotypes
in mites and bees was consistent, a result that deviated
significantly from random (Fisher’s exact test, P < 0.001)
(Figure 3).

DISCUSSION

V. destructor is a native ectoparasite of the Asian honey bee
that has successfully established infestation in European honey
bee colonies. The impact of V. destructor infestation on the
native host is minor, as the bees can effectively inhibit mite
reproduction (27). However, the novel host lacks this acquired
defense and the number of the mites infesting colonies can
increase by orders of magnitudes, often leading to the collapse
of the colony (28–30). Previously, 6 haplotypes of V. destructor
were identified based on a 458 bp DNA fragment of cytochrome
c oxidase subunit 1 (COX1), with one haplotype per geographic
location (7). Two (Korea and Japan haplotypes) out of these 6
haplotypes were found parasitizing the novel host honey bees
and the remaining 4 haplotypes were confined to the native
host honey bees (7). However, within the Korea and Japan
haplotypes, mite haplotypes cannot be further refined using

FIGURE 3 | Chord diagram of the DWV haplotype transmission from the mites

to honey bees. To quantify the transmission of DWV haplotypes from mites to

bees, a controlled mite infestation assay was performed. The larvae were

artificially reared in 48-well microtiter plates and a female mite was transplanted

to each of the larvae. Then DWV haplotypes was quantified for each bee-mite

pair. Two DWV haplotypes dominated in both bee and mites. The dominant

haplotype 1 (D1) accounted for 52% of observed haplotypes in mite, which

accounted for 57% of observed haplotypes in bees. The dominant haplotype 2

(D2) accounted for 37% of observed haplotypes in mite, which also accounted

for 37% of observed haplotypes in bees. A few minor haplotypes were also

observed in bees and mites. Overall, the relative haplotype abundance of DWV

in bees was highly consistent with the mites (Fisher’s exact test, P < 0.001).

the COX1 gene. Instead, a highly polymorphic nuclear gene
is required. In our data, SNVs were not found in the COX1
gene. Further, the COX1 gene perfectly aligned to the Korean
haplotype sequence, suggesting all 80 studied mites originated
from this lineage (31). This haplotype has spread to, and thrived
in, novel host honey bees while also maintaining reproductive
potential in the native host honey bees (27, 32). In our study, we
identified a highly polymorphic gene, ASCC3, which can serve
as an alternate candidate gene for fine-scale population genetic
studies in these mites.

Although current diversity in mite populations is low,
variation among colonies and apiaries has been reported (33,
34). In our data, the small number of SNVs suggests low
standing genetic diversity. Colony-level variation exists and
the overall selective pressure on mites remains similar at the
colony level, as suggested by the number of synonymous
and non-synonymous SNVs. Additionally, the Korea haplotype
may have switched back to the native host, boosting mite
diversity and facilitating the exchange of viruses (33, 35, 36).
DWV is transmitted from queens to offspring, by feeding on
contaminated food, and via feeding by mites. In the absence
of mites, infection levels of DWV were generally low and
didn’t present the indicative symptom of deformed wings (37).
In natural conditions, DWV was found in pollen, feces and
flowers, facilitating horizontal transmission among pollinators,
as well as to insect predators (38–42). Spillover of DWV among
pollinators could enhance mutation and recombination events.
Multiple transmission routes could lead to increased DWV
diversity (43–45), perhaps helping to explain why observed
DWV diversity is higher than that of mites. In our data,
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several bee viruses were associated with V. destructor but DWV
was the most abundant of these. Using amplified fragments
of DWV, haplotype variance was found among bee colonies
(46, 47). The diversity between individuals remained high
and 286 divergent nucleotides were identified from DWV
isolated from bees (48). In our data, 381 SNVs were identified
from DWV isolated from mites and numerous haplotypes
were found from each colony. Less than 5% of the SNVs
were commonly shared among colonies and the distribution
of haplotypes was significantly different among the colonies.
Interestingly, we found the relative abundance of DWV was
highly consistent in paired mites and bees. Even though
the transmission of DWV between honey bees and mites is
reciprocal and the mites may contain bee cells, the impacts
on haplotype structure are minor as long as the dominant
haplotypes are circulating in local population. Overall, our results
suggest minor competition among the haplotypes during the
proliferation within the selected mite—honey bee pairs. Our
study is limited by using randomly collected phoretic mites,
different gene expression patterns may be identified using other
life stages.
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