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Abstract – Honey bees (Apis mellifera) are an important social pollinator, crucial in maintaining ecological 
balance and biodiversity. The haploid-diploid sex determination system determines their sexes where males 
are haploids formed from unfertilized eggs while females are diploids formed from fertilized eggs. To better 
understand the gonad differentiation mechanism in honey bees, here the transcriptome difference between the 
honey bee ovary and testis were analyzed using the Illumina sequencing technology. A total of 4380 differen-
tially expressed genes (DEGs) were identified, with 2255 up-regulated and 2125 down-regulated in the ovary 
compared to the testis. Among these, many candidate DEGs related to sex determination, spermatogenesis, and 
oogenesis were identified, such as csd, fem, and dsx. Moreover, 3092 differentially expressed alternative splicing 
events (ASEs) related to 1497 genes, such as tra2, ovo, and squid, were identified between the ovary and testis. 
The findings of this study provide valuable information on gene expression for understanding the underlying 
molecular mechanisms of gonad differentiation and gametogenesis in A. mellifera.
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1. INTRODUCTION

As important social-economic insects, honey 
bees (Apis mellifera L.) are a source of several 
products for human consumption while serving 
as important pollinators in nature. In colonies, 
the queens and worker bees are females, while 
drones are males. The sex of honey bees is deter-
mined by the haploid-diploid system, where 
males are haploids formed from unfertilized 
eggs while females are diploids resulting from 
fertilized eggs. The queens and drones have fully 

developed gonads, and their sexual maturity is 
asynchronous; after emergence, the queens need 
5–10 days to reach sexual maturity (Chen, 2001), 
and the drones need 9–12 days (Bishop, 1920).

In animals, the sexual development process 
entails sex determination and differentiation, 
which not only leads to morphological differ-
ences in reproductive organs between male and  
female, but also affects many other aspects of the 
two sexes, such as behavior and physiology. In 
honey bees, sex is determined by the heterozy-
gosity of a single complementary sex determiner 
(csd) which was identified by linkage analysis of 
genetic map (Beye et al., 2003). When the embryo 
is heterozygous at the csd locus, it develops into  
a fertile female; when the embryo is hemizygous at 
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the csd locus, it develops into a fertile males; when  
the embryo contains two identical cds alleles, it 
develops into a diploid male (Beye et al., 2003). 
csd directs the female-specific splicing of femin-
izer (fem) gene, which then controls the female-
specific splicing of Amdoublesex (Amdsx) gene, 
a conserved sex-determining gene at the end 
of the sex determination cascade in multicel-
lular animals (Whiting, 1943). Therefore, the 
csd > fem > Amdsx genetic cascade controls the 
development of honey bee sexes, subsequently 
leading to sex-specific phenotypes (Beye et al., 
2003; Cho et al., 2007; Hasselmann et al., 2008; 
Gempe et al., 2009).

Genes in the main sex determination cas-
cade of honey bee have been identified (Beye  
et al., 2003; Hasselmann et al., 2008; Gempe 
et  al., 2009; Cho et  al., 2007). However, the 
molecular aspects of their reproductive activity 
and gonad development remain unknown. There-
fore, in the present study, we performed compar-
ative transcriptome sequencing analysis on the A. 
mellifera ovary and testis. The findings revealed 
major expression differences between the male 
and female gonads. These findings will increase 
the understanding of the underlying molecular 
mechanism in gonad differentiation, which pro-
vides valuable knowledge on gene expression for 
future research.

2.  MATERIAL AND METHODS

2.1.  Insects

The honey bees (A. mellifera ligustica) were 
reared under natural conditions at the Honeybee 
Research Institute of Jiangxi Agricultural Uni-
versity (28°46′N, 115°49′E), Nanchang, Jiangxi, 
China.

The queens used for collecting ovaries were 
bred from two A. mellifera colonies. Briefly, the 
queens of the two colonies were respectively 
restricted to a worker cell comb for 12 h to lay 
fertilized eggs, after which the comb was trans-
ferred to the super box of the same colony until 
the eggs hatched. The 1-day old larvae of simi-
lar size were grafted to the queen cells using a 

grafting needle and then were placed in the super 
box. After emergence, the newly emerged queens 
were kept in queen cages and then transferred to 
their original colonies. The queen’s ovaries were 
dissected under a  stereomicroscope (Guiguang, 
GL-99TI, Guilin, China) after 12  days, then 
frozen immediately in liquid nitrogen. Ovaries 
from two queens in each colony were collected 
as a sample, and two biological replicates were 
sampled.

At the same time, testis samples were col-
lected from drones bred by the same two col-
onies. For this, the queen in each colony was 
restricted in a drone foundation to lay unferti-
lized eggs for 12 h. The queen was then released, 
and the comb was transferred to the super box in 
the same colony until the eggs hatched. A day 
before drone emergence, the comb was trans-
ferred to an incubator regulated at 34.5 °C and 
relative humidity of 70%. After emergence, the 
drones were marked by coloring the back of their 
thorax and returned to their original colony. The 
drones reached sexual maturity after 12 days 
(Graham, 2015), and they were captured. Their 
testes were dissected under a stereomicroscope 
and then were immediately frozen in liquid nitro-
gen. Testes collected from ten drones in each col-
ony were pooled as a sample, and two biological 
replicates were sampled.

2.2.  cDNA library construction and 
sequencing

Total RNAs were extracted from the ovary 
and testis samples using Trizol Reagent (US 
Patent No.5,346,994). The extracted total RNA 
purity (OD260/280), concentration, nucleic 
acid absorption peak, and RNA integrity were 
detected using NanoDrop 2000 (Thermo Fisher 
Scientific, Wilmington, DE) and Agilent Bioana-
lyzer 2100 system (Agilent Technologies, CA, 
USA). The mRNAs were then enriched using 
magnetic beads with oligo (dT) while being 
randomly interrupted in fragmentation buffer 
to construct the sequencing libraries. The first 
cDNA strands were synthesized using random 
hexamers and M-MuLVreverse transcriptase, 
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while the second was synthesized using enzyme 
buffer, dNTPs, RNase H, and DNA polymerase 
I. The synthesized cDNAs were purified using 
AMPure XP beads (Beckman Coulter, USA) 
then subjected to end repairing, poly (A) tail-
ing, and addition of sequencing adaptors. cDNA 
fragments of 240 bp in length were preferentially 
selected using AMPure XP beads, and the cDNA 
libraries were constructed by PCR amplifica-
tion, enriched, and sequenced using the Illumina 
Hiseq 4000 platform (Illumina, CA, USA).

2.3.  Mapping of sequencing data to the 
reference genome

Raw sequences were filtered using the FastQC 
software to remove reads containing just adap-
tors and low-quality reads (reads containing “N” 
more than 10%; reads containing bases with 
mass value Q ≤ 10 accounted for more than 50% 
of the whole read). The clean reads were submit-
ted to the NCBI SRA database under the acces-
sion numbers SRR15276287, SRR15276288, 
SRR15276289, and SRR15276290.

Cleaned reads were aligned to the A. mellifera 
genome version Amel_HAv3.1 (ftp:// ftp. ncbi. 
nlm. nih. gov/ genom es/ all/ GCA/ 003/ 254/ 395/ 
GCA_ 00325 4395.2_ Amel_ HAv3.1/) using the 
HISAT2 software (Kim et al., 2015).

2.4.  Gene expression level determination 
and standardization

The fragments per kilobase of script per mil-
lion fragments mapped (FPKM) was used to 
measure gene expression using the cuffquant and 
cuffnorm components of the Cufflinks software 
(Trapnell et al., 2012). The FPKM was calcu-
lated as follows:

where the cDNA fragments represent the num-
ber of reads mapped to a transcript, mapped  
fragments (Millions) represent the total num-
ber of reads mapped to the transcripts, and 

cDNA fragments

Mapped fragments (millions) × Transcript length (kb)

transcript length (kb) represents the length of 
each transcript.

2.5.  Screening of DEGs and ASEs

The DESeq software was used to identify dif-
ferentially expressed genes between the ovary 
and testis. The Benjamini–Hochberg method 
was adopted to correct the p values, which 
is indicated as FDR (corrected p values). The 
|log2(fold change)|≥ 1 and FDR < 0.01 were used 
as the DEG screening criteria. Gene Ontology 
(GO) enrichment analysis of functional signifi-
cance was then performed by mapping all DEGs 
to the GO database (Harris et al., 2004). Finally, 
pathway analysis was performed in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
database (Kanehisa and Goto, 2000).

The cleaned reads were assembled into longer 
transcripts using the StringTie software (Pertea 
et al., 2015). The ASprofile software (Florea 
et al., 2013) determined the alternative splic-
ing types in each gene and their corresponding 
expression levels. Differentially expressed ASEs 
were identified using rMATS software (Shen 
et al., 2014) following the |Δψ|> c (c = 0.0001) 
and FDR < 0.05 criteria.

2.6.  Quantitative real-time PCR 
(qRT-PCR)

To perform quantitative PCR experiment, 
we bred many queens and drones. Then, ovary 
and testis samples were collected from 12-day-
old queens and drones, respectively. Their total 
RNAs were extracted, and the RNA integrity 
was detected by agarose gel electrophoresis. 
In addition, the RNA concentration and purity 
(OD260/280 value) were detected using an ultra-
violet spectrophotometer. The RNA samples 
(1 μg/μL) were reverse transcribed into cDNA 
using the MLV reverse transcriptase kit (Inv-
itrogen, CA, USA). Nine DEGs (squid, rbp1, 
tra2, vgr, vasa, dicer1, fem, stat92e, dpp) were 
selected for qRT-PCR analysis using A. mellifera 
gapdh gene as an internal reference. The primer 

ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/003/254/395/GCA_003254395.2_Amel_HAv3.1/
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/003/254/395/GCA_003254395.2_Amel_HAv3.1/
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/003/254/395/GCA_003254395.2_Amel_HAv3.1/
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sequences (Table S1) were designed based on 
the mRNA sequences from the GenBank data-
base using the Prime Primer 5.0 software. The 
qRT-PCR reaction system consisted of 5 μL of 
SYBR®Premix Ex Taq™ II, 0.2 μL of ROX cor-
rection fluid, 0.4 μL each of forward and reverse 
primers, 1 μL of cDNA, and 3 μL of  H2O. The 
PCR conditions were as follows: 95 °C, 5 min; 
94 °C, 2 min; 40 cycles (95 °C, 10 s, Tm, 15 s, 
72 °C, 15 s); 72 °C, 10 min. To establish the 
melting curve of the qRT-PCR product, the prim-
ers were heated slowly with a gradual increase of 
1 °C every 5 s from 72 to 99 °C. The specificity 
of the PCR products was analyzed by dissolution 
curve. For each gene, eight biological replicates 
were adopted, with four technical repeats each. 
The data were analyzed by  2−△△CT (Schmittgen 
and Livak, 2008). Significant differences were 
analyzed by t test with a cutoff value of 0.05 
using the SPSS17.0 software (SPSS Inc., 2008).

3.  RESULTS AND DISCUSSION

3.1.  Transcriptome sequencing of ovary 
and testis

Four RNA-seq libraries of A. mellif-
era ovary and testis were generated from 
two biological replicates, each. A total of 
35,310,578–40,246,018 high-quality reads 
were obtained after removing the sequenc-
ing adaptors and low-quality reads (Table I). 
The total length of reads in each sample was 
4,443,325,050–5,062,141,958nt, with a percent-
age of Q30 bases more than 94.29%, implying 

that the base sequencing and identification 
were reliable and accurate. Approximately 
30,660,123–34,952,594 (82.58–89.47%) of the 
cleaned reads mapped to the A. mellifera genome 
version Amel_HAv3.1.

3.2.  Repeated correlation assessment

The correlation heat map between gene 
expression of the paired biological replicates 
of ovary and testis revealed that the r2 values 
between two different biological replicates were 
more than 0.88 and between ovary and testis 
were less than 0.1, suggesting high reliability and 
repeatability of the RNA-seq data (Figure S1).

3.3.  Differentially expressed genes 
between the ovary and testis

A total of 4380 DEGs between the ovary 
and testis, including 2255 up-regulated genes 
in the ovary and 2125 in the testis, were iden-
tified (Figure 1). The top three up-regulated 
genes in the ovary were odorant-binding pro-
tein 7 (LOC677668), two-pore potassium chan-
nel protein sup-9 (LOC413020), and cilia- and 
flagella-associated protein 58 (LOC412109). In 
the testis, hypothetical protein WN51_08187 
(LOC113219380), carboxypeptidase B-like 
(LOC551327), and galactose-1-phosphate uridy-
lyltransferase (LOC724540) were the top three 
up-regulated genes (Table S2).

In addition, GO enrichment of the DEGs 
showed that eight terms were significantly 

Table I
Summary of the sequencing data

Samples Total raw reads Total clean 
reads

Total clean 
bases

% ≥ Q30 GC 
content

UniqMapped 
reads

UniqMapped 
ratio

Ovary-1 35,733,426 35,310,578 4,443,325,050 94.29% 40.14% 31,561,769 89.38%
Ovary-2 37,092,766 36,662,242 4,612,969,330 94.45% 40.60% 32,802,017 89.47%
Testis-1 40,739,626 40,246,018 5,062,141,958 94.50% 41.15% 34,952,594 86.85%
Testis-2 40,380,252 37,127,078 4,669,243,028 94.72% 42.26% 30,660,123 82.58%
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enriched, including transmembrane transport 
(GO:0,055,085), oxidation–reduction process 
(GO:0,055,114), potassium ion transmembrane 
transport (GO:0,071,805), regulation of tran-
scription, DNA-templated (GO:0,006,355), inte-
gral component of membrane (GO:0,016,021), 
and transcription factor activity, sequence- 
specific DNA binding (GO:0,003,700) (q < 0.05; 
Table S3). The KEGG pathway analysis revealed 
that three signaling pathways, namely ECM-
receptor interaction (KO04512), lysosome 
(KO04142), and glycosaminoglycan degradation 
(KO00531), were significantly enriched (q < 0.05; 
Table S4). The ECM-receptor interaction pathway 
is implicated in cell migration, proliferation, fol-
licle growth, and oocyte maturation (Berkholtz 
et al., 2006).

Among the up-regulated genes in the ovary, 
ten GO terms and two KEGG pathways were 
significantly enriched (q < 0.05; Tables  S3   
and S4). However, the testis up-regulated genes 
significantly enriched eight GO terms and 17 
KEGG pathways (q < 0.05; Tables S3 and S4);  
of them, the ascorbate and aldarate metabolism  
(ko00053) is the most relevant pathway to the 

caput epididymis and may play important roles 
in sperm maturation (Hu et al., 2018).

3.4.  DEGs involved in sex determination

Five DEGs related to sex determination 
in honey bee or Drosophila were identified, 
including csd  (log2(testis/ovary) = 4.74), fem 
 (log2(testis/ovary) = 4.92), dsx  (log2(testis/
ovary) = 2.44), tra2(log2(testis/ovary) = -2.07), 
and rbp1  (log2(testis/ovary) =  − 1.06), with 
GenBank accession numbers LOC406074, 
LOC724970, LOC725126, LOC725195, and 
LOC413835. The csd, fem, and dsx were up-
regulated in the testis, while tra2 and rbp1 were 
up-regulated in the ovary (Figure 2).

The csd gene is the initial signal for honey 
bee sex determination (Beye et al., 2003), which 
is realized through heterozygosity of csd gene. 
When csd is heterozygous, the embryo develops 
into a female; when csd is homozygous or hemizy-
gous, the embryo develops into a male (Beye  
et  al., 2003). The csd gene has many alleles 
among the bee populations hence subjected to 
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Figure 1.  Up- and down-regulated DEGs in the ovary compared to the testis in 12-day-old honey bees (Apis mellif-
era). Both ovary and testis contain two biological replicates
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balance selection (Hasselmann and Beye, 2004; 
Liu et al., 2011, 2012; Wang et al., 2012). Com-
ing second in the honey bee sex determination 
cascade is fem, which maintains and stabilizes 
the female-specific development of embryos 
while regulating the female-specific splicing 
of its downstream gene dsx (Hasselmann et al., 
2008; Gempe et al., 2009). The fem expression 
is also necessary for female gonad differentia-
tion (Gempe et al., 2009). However, in this study 
these two genes are up-regulated in the testis; it 
is unknown whether they have function in honey 
bee testis.

dsx is a conservative gene expressed at the 
end of the sex determination cascade in insects. 
It controls the somatic cells’ sex identity and the 
germ cells’ development (Steinmann-Zwicky, 
1994). Besides, in A. mellifera, dsx produces sex-
specific proteins (DSX-F and DSX-M) through 
alternative splicing to regulate sex development 
(Cho et al., 2007). In addition, tra2 and rbp1 are 
important splicing factors regulating alternative  
splicing of dsx pre-mRNA in the sex determi-
nation pathway in Drosophila melanogaster  
(Burtis and Baker, 1989; Hoshijima et al., 1991). 
Moreover, the tra2 homologs have been succes-
sively isolated and linked to sex determination in 
other insects, such as A. mellifera (Nissen et al., 

2012), Musca domestica (Burghardt et al., 2005), 
Ceratitis capitata (Marco et al., 2009), Bombyx 
mori (Suzuki et al., 2012), Tribolium castaneum 
(Shukla and Palli, 2013), and Sclerotia aquatilis 
(Nguantad et al., 2020). tra2 also regulates ovari-
ole number and ovary size in Aedes albopictus 
(Li et al., 2019). In the present study tra2and rbp1 
were significantly expressed higher in ovary than 
in testis, implying that they might be involved in 
ovary development or oogenesis in honey bees.

3.5.  DEGs involved in oocyte development 
and oogenesis

Several genes involved in ovary development 
or oogenesis were up-regulated in the ovary, 
such as vgr, vasa, squid, ago3, aub, ovo, and otu 
with GenBank accession numbers LOC725920, 
LOC410692, LOC408936, LOC725111, 
LOC412427, LOC552100, and LOC100576989, 
respectively (Figure 2).

In insects, vgr codes for an ovary-specific 
protein that mediates the absorption of vitello-
genin (vg) from the hemolymph by the develop-
ing oocytes in the ovaries (Tufail and Takeda, 
2009). vgr expression is essential for reproductive 
development. For example, knocking down the 
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vgr expression by RNAi in Nilaparvata lugens 
(Lu et al., 2015) and Haemaphysalis longicornis 
Neumann (Boldbaatar et al., 2008) led to abnor-
mal development of oocytes and abnormal eggs. 
The vasa gene is essential for polar cell forma-
tion where the VASA protein binds to mRNAs of 
target genes involved in germ cell establishment 
and oogenesis, promoting their translation (Gavis 
et al., 1996; Tomancak et al., 1998; Styhler et al., 
1998). For example, RNAi-based knockdown of 
vasa in Schistosoma mansoni led to a reduction in 
the ovary volume and a lower number of dividing 
cells in immature ovary (Skinner et al., 2020). 
The squid gene functions in nuclear export, cyto-
plasmic transport, and translational control of the 
gurken mRNA during oogenesis (Norvell et al., 
1999). The aub and ago3 are germ cell PIWI-
interacting RNA (piRNA) pathway components, 
essential in germline development, stem cell self- 
renewal, epigenetic regulation, and transposon 
silencing (Kennerdell et al., 2002; Malone and 
Hannon, 2009; Thomson and Lin, 2009). They 
form a “ping-pong” feed-forward piRNA ampli-
fication loop with PIWI in the Drosophila ovary, 
in which ago3 binds to a sense piRNA and guides 
cleavage of antisense transposon mRNAs to pro-
duce antisense piRNAs and in turn aub binds 
to an antisense piRNA and guides cleavage of 
sense transposon mRNAs to produce a new sense 
piRNA (Brennecke et al., 2007; Gunawardane 
et  al., 2007). Therefore, the up-regulation of 
these genes in the ovary implied that they might 
be involved in ovary development or oogenesis, 
but it needs further experimental verification.

In Drosophila, ovo and otu genes are crucial 
in oogenesis’ early and late stages (Kennerdell 
et al., 2002; Oliver et al., 1987; Steinhauer and 
Kalfayan, 1992; Tirronen et al., 1995; Hinson 
et al., 1999). The ovo mutation leads to the early 
arrest of oogenesis and complete absence of 
germline (Oliver et al., 1987), while out muta-
tion causes abnormal ovarian development 
(Steinhauer and Kalfayan, 1992; Tirronen et al., 
1995). A higher expression of both in the ovary 
suggests a common function in honey bees and 
Drosophila.

3.6.  DEGs involved in testis development 
and spermatogenesis

Several genes involved in testis develop-
ment or spermatogenesis were up-regulated 
in the testis, including dpp, stat92e, dicer1, 
spata5, spata17, and muc1 with GenBank 
accession numbers LOC727101, LOC413742, 
LOC726766, LOC411003, LOC107964258, and 
LOC551924, respectively (Figure 2).

The dpp signaling regulates germline stem 
cell (GSC) self-renewal and differentiation by 
interacting with Birt-Hogg-Dubé syndrome 
(BHD) in fruit fly testis (Singh et al., 2006). The  
dicer1 enzyme is required for germ cell develop-
ment and spermatogenesis in mammals (Björkgren  
and Sipilä, 2015). For example, in male  
mice, the absence of dicer1 results in infertility 
prolongs the time required for germ cells to enter 
the first prophase during meiosis from interphase 
and increases the apoptosis of primary spermat-
ocytes (Yannick et  al., 2011). stat92e activa-
tion promotes the male GSC establishment and  
maintenance in adult testes (Kiger et al., 2001; 
Tulina and Matunis, 2001) and male germ cell 
sex determination during gonad coalescence 
(Wawersik et al., 2005). SPATA5 and SPATA17 
are members of the AAA-protein family, which 
consists of ATPase associated with diverse 
activities. spata5 is expressed at the early stages 
of spermatogenesis in mice (Liu et al., 2000). 
spata5 knockdown in male Nilaparvata lugens 
decreases the male accessory gland protein con-
tent and causes the malformation of vas deferens 
and seminal vesicle (Ge et al., 2016). Besides, 
SPATA17 is important in testis development 
and testis-specific apoptosis (Nie et al., 2011,  
2013). MUC1 is a nonglobular transmembrane 
glycoprotein expressed in male germ cell line 
and ejaculated sperms (Martínez-Conejero et al., 
2008), facilitating the separation of delayed cell 
maturation and splitting of spermatozoa into the 
lumen of the seminiferous tubules (Franke et al., 
2001). Therefore, the up-regulation of these genes 
in the testis implied that they are involved in testis 
development or spermatogenesis in honey bees.
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3.7.  Differentially expressed alternative 
splicing events (ASEs)

Alternative splicing is essential in the sex deter-
mination of many insects, such as Drosophila 
where a regulatory cascade of X:A > sxl > tra > dsx 
determines sex through alternative splicing 
(Sánchez, 2008). This study analyzed 12 types 
of ASEs present in the ovary and testis. A total 
of 35,486 and 37,774 ASEs were detected in the 
ovary and testis, respectively. The alternative 5′ 
first exon (transcription start site) and alternative 
3′ last exons (transcription terminal site) were the 
two most abundant ASE types in the ovary and 
testis (Figure 3). Additionally, 3092 differentially 

expressed ASEs between the ovary and testis 
related to 1497 genes were identified (Tables II  
and S5). We found that multiple DEGs mentioned 
above contain ASEs, such as tra2, ovo, squid, aub, 
muc1, and dicer1.

The GO analysis of the differentially 
expressed ASEs related genes revealed that 341 
GO terms were significantly enriched (q < 0.05, 
Table S6). Among them, oocyte anterior/pos-
terior axis specification (GO:0,007,314) and 
oocyte microtubule cytoskeleton organization 
(GO:0,016,325) were related to oogenesis. How-
ever, only the WNT signaling pathway (ko04310) 
was significantly enriched (q < 0.05, Table S7) in 
the KEGG analysis. The WNT signaling pathway 

0 5000 10000 15000 0 5000 10000 15000

Number

A
S 

    
ty

pe

ovary testis

Alternative ends(AE)

Intron retention(IR)

Multi-IR(MIR)

Multi-exon SKIP(MSKIP)

Skipped exon(SKIP)

Alternative 5’ first exon(TSS)

Alternative 3’ last exon(TTS)

Approximate AE(XAE)

Approximate IR(XIR)

Approximate MIR(XMIR)

Approximate MSKIP(AMSKIP)

Approximate SKIP(SKIP)

Figure 3.  Statistical bar chart of ASEs detected in the ovary and testis. X-axis indicates the number of ASEs. Y-axis 
shows the 12 types of ASEs

Table II
Differentially expressed ASEs and related genes between the ovary and testis

Variable splicing type ASE numbers Relative 
genes

Alterative 3′ splice sites (A3SS) 408 346
Alterative 5′ splice sites (A5SS) 376 300
Mutually exclusive (MXE) 406 193
Retained intron (RI) 64 62
Skipped exon (SE) 1838 1051
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is implicated in gonad differentiation and devel-
opment (Harwood et al., 2008; Golestaneh et al., 
2009; Nicol and Guigen 2011). These findings 
imply that alternative splicing is important in A. 
mellifera gonad and germ cell development.

3.8.  Validation of DEGs by qRT-PCR 
analysis

Nine DEGs were selected for the validation 
of the reliability of the RNA-seq results using 
qRT-PCR. All the nine genes showed significant 
expression differences between the ovary and 
testis (t test, p < 0.05, Table S8), with five being 
up-regulated in the ovary and four in the testis 
(Figure 4). This is consistent with the RNA-seq 
results, indicating that the transcriptome analysis 
findings were highly reliable.

In summary, this study analyzed the transcrip-
tome difference between the A. mellifera ovary 
and testis using RNA-seq. A large amount of 
DEGs and ASEs were identified, and many of 
them are related to sex determination, oogenesis, 
and spermatogenesis. These findings provide val-
uable information for understanding reproductive 
biology of honey bees.
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