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A B S T R A C T

Odorant receptors play a crucial role in the special recognition of scent molecules in the honeybee olfaction
system. The odorant receptor 11 (AmOR11) in western honeybee drones (Apis mellifera) has been demonstrated
to specifically bind to 9-oxo-2-decenoic acid (9-ODA) of queens. However, little is known regarding the functions
of OR11 Asian honeybee drones (Apis cerana) in the context of their mating activities. In this study, the odorant
receptor 11 gene (AcOr11) from A. cerana was cloned, and its expression profiles were examined during two
developmental stages (immature and sexually mature) and different physiological statuses (flying and crawling).
The cDNA sequence of AcOr11 was highly similar to that of AmOr11, and encoded a membrane-coupled protein
of 384 amino acids. The results of qRT-PCR indicated that AcOr11 was expressed at higher levels in drone
antennae compared to brains, and the expression was significantly up-regulated in sexually mature drone brains
compared to immature brains. Interestingly, AcOr11 expression in brains of mature flying drones was drama-
tically higher than those of mature crawling drones. To our knowledge, this study demonstrate a link between
AcOr11 gene expression in the brain of honeybee drones and behavior associated with sexual maturity and
mating flight.

Introduction

Honeybee olfaction is essential for the perception and discrimina-
tion of a variety of odor molecules in external environment (Laska et al.,
1999; Robertson and Wanner, 2006). This olfaction ability allows
honeybees an efficient method of chemical communication inside and
outside of their colonies. Furthermore, this ability has been shown to be
especially important in mating flights (Slessor et al., 2005; Sandoz
et al., 2007). In mating flights, male bees arrive early at drone con-
gregate area (DCA) that in midair. A virgin queen fly through a DCA
and release queen mandibular pheromones (QMPs) which mainly in-
cluding (E)-9-oxodec-2-enoic acid (9-ODA), two enantiomers of (E)-9-
hydroxydec-2-enoic acid (9-HDA; 85% (R)-(−), 15% (S-(+)), methyl p-
hydroxybenzoate (HOB) and 4-hydroxy-3-methoxyphe-nylethanol
(HVA) (Butler et al., 1959; Butler, 1971; Gary and Marston, 1971;
Slessor et al., 1988; Keeling et al., 2003). On the other hand, drones use
their olfaction capabilities, which is believed to be specific to males, to
locate virgin queens in mating flights by scanning for and sensing queen
pheromones in the air (Brockmann and Brückner, 2001; Wanner et al.,

2007). Evidence has indicated that drones can detect QMPs over an
extended distance (> 800m), indicating very high sensitivity of their
olfaction (Loper et al., 1993).

Among these, 9-ODA, is one of the predominantly detected com-
pounds of QMPs, which function as a short-range social pheromone
attracting workers within the colony, and as a long-range sex pher-
omone attracting drones at mating flights (Butler, 1971; Gary and
Marston, 1971; Boch et al., 1975; Loper et al., 1993; Brockmann et al.,
2006). Electrophysiological recordings have demonstrated that drones
have a greater proportion of olfactory neurons in their antennae tuned
to QMPs compared to workers. More interestingly, drone's antennae are
more sensitive to 9-ODA than any other single component of QMPs
(Vetter and Visscher, 1997; Brockmann et al., 1998). This is believed to
result from the expression of a special odorant receptor in the antennae
of honeybees. A. mellifera odorant receptor 11 (AmOr11) in male bees
has been demonstrated to specifically bind 9-ODA (Wanner et al.,
2007). Recently, Wu et al. (2016) found that 16 ORs were up-regulated
in the sexually matured drones of A. mellifera by using high-throughput
RNA-Seq. Moreover, a subsequent investigation reported that AmOr11
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expression levels are higher in the antennae of sexually mature drones
than immature drones (Villar et al., 2015). This observation suggests a
likely association between AmOr11 and the process of sexual matura-
tion of honeybee drones. In addition, QMPs not only trigger drone
mating behavior, but also exert other primer effects on body develop-
ment of drone bees. Young male-bees exposed to 9-ODA in hive not only
result in delayed initial mating flights, but reduce flight duration as well
(Villar and Grozinger, 2017). Other evidence has indicated that Dro-
sophila melanogaster specific pheromone receptor participate in their
regulation of mating behavior both male and female (Kurtovic et al.,
2007). In honeybee brains, the antennal lobes (AL) consist of approxi-
mately 160–170 glomeruli which correspond with their ORs (Hansson
and Anton, 2000; Robertson and Wanner, 2006), although the specific
mechanisms of action remain unclear. Therefore, we suspect that
odorant receptors expressed in honeybee drones, especially AmOR11,
may participate in multiple biological functions that aid in the detec-
tion of 9-ODA during mating flights, or in the regulation of drone
maturation and mating behaviors.

Apis cerana, an Asian honeybee species, has been demonstrated to
exhibit enhanced searching abilities to locate sparse floral resources
(Zeng, 2017), and better colour cognition and orientation learning re-
lative to that of A. mellifera (Qin et al., 2012; Zhang et al., 2014). Re-
cently, many A. cerana odorant receptor genes (AcOrs) have been pre-
liminarily investigated, including annotated, cloning, characterized,
mRNA/protein expression patterns, and localization within the organ-
isms (Zhang et al., 2012; Zhao et al., 2012; Zhao et al., 2013, 2014; Park
et al., 2015; Zhao et al., 2015; Zhang et al., 2016; Du et al., 2017a,b;
Yang et al., 2017). These mRNA sequences were found to be highly
similar with those of A. mellifera.Park et al. (2015) have characterized
119 Ors by whole A. cerana genome sequencing. The AcOr2 and AcOr3
in Asian honeybee antennae both reveal male-bias, and are expressed at
the highest levels at sexual maturity (Zhao et al., 2014; Zhang et al.,
2016). However, information is scarce regarding the A. cerana odorant
receptor 11 (AcOr11) at the time of publication. In this study, we
identified the AcOr11gene, determined the gene's DNA sequence, and
characterized expression patterns across sexual developmental stages
and different physiological statuses in both antenna and brain of A.
cerana drones. This allows for thorough investigation of the biological
functions of AcOr11 in male mating behavior and progression through
sexual maturity, and eventually to provide a physiologic background
leading to mating flights of honeybee drones.

Materials and methods

Insects

Three Asian honeybee (A. cerana) colonies were maintained at the
Honeybee Research Institute of Jiangxi Agricultural University
(28.46°N, 115.49°E). Each colony had a mature egg-laying queen and 5
frames.

Sample collection

In first experiment, 30 drones were randomly collected at entrance
of the hive, upon returning home, using forceps. The drones were im-
mediately stored in liquid nitrogen for subsequent cloning experiment
of target genes. In the second experiment, antennae and brains were
collected from 4-day-old (sexually immature) and 14-day-old (sexually
mature) drones. This included crawling drones inside of colonies as well
as those flying back to the hive. These insects were used for gene ex-
pression analysis of the AcOr11 and AcOr2 (odorant receptor co-re-
ceptor, ortholog Or83b family) genes. This detailed methods used for
our study of collected drones was referenced (Villar et al., 2015). For
each group, 30 pairs of antennae and brains each, with 3 biological
replicates from 3 different colonies were examined. These studies were
conducted during the spring of 2018.

Cloning of the AcOr11 gene

Total RNA was extracted from 30 pairs of drone antennae using the
TransZol reagent (Transgen Biotech, www.transgen.com.cn) according
to the manufacturer's instructions, and stored in a freezer at −80 °C
until use. Since honeybee odorant receptors are distributed mainly in
antennae, and their expression patterns are especially enriched in an-
tennae of honeybee, we therefore used antennae for cloning (Hugh
Robertson and Wanner, 2006; Claudianos et al., 2014). The cDNA was
synthesized from the total RNA isolated from antennae using the
Primer-Script RT reagent Kit (TaKaRa, www.takara-bio.com) according
to the manufacturer's instructions.

The primers used to amplify AcOr11 (see Table 1) were designed
using the primer premier 5.0 software (Premier Biosoft International
Co., Palo Alto, CA) with the input mRNA sequence of the AmOr11 gene
(GenBank accession: NM_001242962.1) deposited in NCBI. The afore-
mentioned primers were synthesized by Sangon Biotech (Sangon Bio-
tech Shanghai, China Co., Ltd). The PCR thermocycling conditions were
as follows: 94 °C for 2min, followed by 30 cycles of 94 °C for 30 s, 58 °C
for 45 s, 72 °C for 90 s, and a final extension at 72 °C for 10min. The
PCR products were then electrophoretically resolved on a 1.5% agarose
gel, and purified using a Gel Extraction Kit (Cwbiotech, www.
cwbiotech.bioon.com.cn). Next, the purified products were ligated
into an pEASY-T3 Clone Vector, and subsequently transformed into
Trans5α Chemically Competent Cell (TransGen Biotech). Positive
clones were screened and sequenced by Sangon Biotech.

Sequence analysis

After sequencing, the cDNA sequence of AcOr11 was obtained by
assembling forward and reverse sequencing reads using SeqMan pro-
gram in DNAstar 5.0 software (Lynnon Biosoft, Quebec, Canada). The
amino acid sequence was translated by the Bioedit software. Similarity
searches were conducted using BLAST programs on the NCBI website
(http://www.ncbi.nlm.nih.gov). The isoelectric point (pI) and mole-
cular weights (MW) were computed using Compute pI/MW (http://
www.expasy.ch/tools/pi_tool.html). The post-translational modifica-
tion sites were predicted using PROSITE SCAN (https://npsa-prabi.ibcp.
fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_server.html). The sec-
ondary structures were predicted using the SOPMA program (http://
npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.
html). The transmembrane helix (TMH) was predicted by using
TMHMM Server v.2.0 (http://www.cbs.dtu.dk/services/TMHMM).
Alignments of multiple sequences were carried out using ClustalW
(Thompson et al., 1994). The phylogenetic tree was constructed using
MEGA4.0 (http://www.megasoftware.net/index.php), with a portion of
sequences of known A. mellifera ORs obtained from GenBank.

Expression of the AcOr11 and AcOr2 genes

Total RNA was isolated from the antennae and brains of drones to
determine the expression levels of AcOr11 and AcOr2. Quantitative

Table 1
Primers used to AcOr11gene clone and qRT-PCR.

Primer names Primer sequences

AcOr11-F1 5’-TCACGAACAAGCTTTCATCGG-3’
AcOr11-R1 5’-GAAAGTGAACAAAGTGCTGTGTACA-3’
AcOr11-R2 5’-TCAATATCATTTTTGGCTAATCAGA-3’
AcOr11-QF 5’-ATGTGCGGTTTGCTGAAGA-3’
AcOr11-QR 5’-CGAGAAGGTGCCAATGACG-3’
AcOr2-QF 5’-GGATCAGAGGAGGCCAAAAC-3’
AcOr2-QR 5’-CCAACACCGAAGCAAAGAGA-3’
Ac-actin-QF 5’-GGCTCCCGAAGAACATCC-3’
Ac-actin-QR 5’-TGCGAAACACCGTCACCC-3’
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Real-Time PCR (qRT-PCR, ABI 7500 instrument) was performed using
the SYBR Premix Ex Taq kit (Takara) in a total reaction volume of 10 μl.
The reaction mixture was prepared as follows: 4.2 μl cDNA (water for
the negative control) and 0.4 μl of each primer. The primers (see
Table 1) for the AcOr11, AcOr2 (GenBank accession: JN792581) and A.
cerana actin genes (Ac-actin, GenBank accession: HM640276.1) were
designed respectively to amplify 296, 118 and 195 bp fragments using
the primer premier 5.0 software. qRT-PCR was performed with an in-
itial denaturation step of 10min at 95 °C, followed by 40 cycles of 94 °C
for 15 s, (AcOr11, 58.9 °C; AcOr2 and Ac-actin, 60 °C) for 40 s, 72 °C for
35 s, and a melting curve analysis was conducted to verify the specifi-
city of the amplification. The Ac-actin gene was used as the internal
control. The relative expression levels of AcOr11 and AcOr2 mRNAs
were calculated using the 2−ΔΔCt comparative CT method (Schmittgen
and Livak, 2008).

Statistical analysis

Differences in the relative expression of the AcOr11 and AcOr2
genes were determined using a t-test analysis in SPSS 17.0 (IBM,
Armonk, NY). Values of P < .05 were considered significant in all
treatments.

Results

Cloning and sequence analysis of the AcOr11gene

To explore the molecular functions of the A. cerana odorant receptor
11, the cDNA sequence of AcOr11 containing the complete coding

region was cloned, and the amino acid sequences were predicted by in
silico translation. The AcOr11 cDNA (GenBank accession: MG793195)
contains a 5′-terminal untranslated region (UTR) of 29 bp, a 3′-terminal
UTR of 93 bp, and an open reading frame (ORF) of 1185 bp encoding a
polypeptide of 394 amino acids (Fig. 1). The molecular mass of the
deduced AcOR11 protein is predicted to be 45.14 kDa, and the calcu-
lated isoelectric point (pI) is 8.98. Moreover, the AcOR11 protein be-
longs to the 7-transmembrane_6 receptor (7TM_6) superfamily, which
consist of TM-I (13−32), TM-II (42–64), TM-III (131–150), TM-IV
(193–215), TM-V (265–287) and TM-VI (302–324) (Fig. 1). The sec-
ondary structure was predicted using SOPMA, which consists of 54.31%
alpha helices, 22.84% beta sheets, 4.06% turns and 18.78% is random
coils. Comparison of the deduced amino acid sequence of AcOR11
(NCBI, BLASTP) to that of AmOR11(NP_001229891.1) reveals a high
degree of identity 98%. Similarly, alignments with ORs of other Hy-
menopterans also exhibit high homology with A. dorsata OR85b-like
(XP_006615208.1 identity, 99%) and A. florea OR4-like
(XP_003691312.1, identity 97%) (Fig. 2). A phylogenetic tree was
constructed using the MEGA 4.0 software using the deduced amino acid
sequences of various A. mellifera ORs and AcOR11(Fig. 3). Phylogenetic
analysis showed that OR11s in A. mellfera and A. cerana belong to a
single subfamily. Moreover, the phylogenetic tree demonstrated that
the OR11 exhibits a relatively distant genetic relationship to the OR2
(ortholog OR83b family).

Analysis of AcOr11 and AcOr2 expression by qRT-PCR

The expression profiles of AcOr11 were characterized across dif-
ferent developmental stages and physiological statuses of A. cerena

Fig. 1. The nucleotide and deduced amino acid sequences of AcOr11. The positions of the nucleotides and amino acids are indicated in the left margin. The start
codons used in cloning and sequencing are boxed, and the termination codon is marked with a star. The Shaded amino acid sequences indicate predicted 7-
transmembrane (7TM- 6) domains, including TM-I (13–32), TM-II (42–64), TM-III (131–150), TM-IV (193–215), TM-V (265–287) and TM-VI (302–324). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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using qRT-PCR. The expression profiles of AcOr11 were determined in
brains and antennae from immature and mature drones. It was observed
that expression of AcOr11 in drone antennae was significantly higher
than that of brains (t=−3.381, df= 4, P= .028, Fig. 4a. left;
t=−5.332, df= 4, P= .006. Fig. 4a. right). In brains, AcOr11 in
mature drones was more highly expressed than those of immature
drones (t=−2.883, df= 4, P= .045, Fig. 4b. left), whereas no dif-
ferences in expression were observed in antennae (t=−0.620, df= 4,
P= .569, Fig. 4b. right). Moreover, AcOr11expression in mature drone
brains in flying status was significantly higher than those in crawling
status (t=−2.790, df= 4, P= .049, Fig. 4c. right). However, there
was no significant difference between the 2 physiological statuses of
immature drones (t=−0.773, df= 4, P= .483, Fig. 4c. left). In an-
tenna, AcOr11 expression of immature drones was significantly higher
in flying status compared to crawling status (t=−3.516, df= 4,
P= .025, Fig. 4d. left), but no differences were observed for the mature
stage (t=−0.150, df= 4, P= .888, Fig. 4d. right). As is presented in
Fig. 5, the expression patterns of AcOr11 and AcOr2 were similar in
brains and antennae between flying and crawling statuses. The ex-
pression level of AcOr2 in mature drone brains in flying status was
significantly higher than that in crawling status (t=−6.350, df= 4,
P= .003, Fig. 5a. right). In contrast, between the physiological statuses
of immature drones, there were no significant differences (t=−2.389,
df= 4, P= .075, Fig. 5a. left). In antenna, AcOr2 of immature drones
was also expressed significantly higher in flying status compared to
crawling status (t=−7.286, df= 4, P= .002, Fig. 5b. left), but was

not different in mature drones (t=1.994, df= 4, P= .117, Fig. 5b.
right).

Discussion

The proteins of general odorant receptors are highly diverse in in-
sects. This is also true for the conservative co-receptor (OR83b) family
(Clyne et al., 1999; Gao and Chess, 1999). In this study, we identified a
putative odorant receptor 11 gene in A. cerana. The AcOr11 amino acid
sequence was observed to share many similar characteristics with that
of the A. mellifera Or11 orthologue. Interestingly, homologs of the
AcOr11 gene was not observed in other insects outside of Apis. In
general, Ors exhibited a high sequence divergence among insects in-
cluding classical model insects such as Anopheles gambiae and Drosophila
melanogaster (Hill et al., 2002; Robertson et al., 2003). These observa-
tions are consistent with an ancient origin of the OR family. As de-
monstrated by the phylogenetic tree constructed here, the AcOR11 was
more closely related to AmOR11 than AmOR2 and AmOR170 of A.
mellifera. This result served as a molecular confirmation for the tradi-
tional phylogenetic classes of honeybees (Robertson and Wanner,
2006), suggesting that AcOR11 belongs to a typical odorant-receptor
protein family in A. cerana.

Expression of AcOr11 was assessed in both the antennae and brain
of A. cerana drones. The data indicated that AcOr11 was expressed at
significantly higher levels in the antennae compared to the brain
(Fig. 4a). These observations were in agreement with our expected

Fig. 2. Alignments of AcOR11 with other honeybee OR sequences. Black shade: identity of sequences =100%; Gray shade: identity of sequences> 75%. The six red
boxes of AcOR11 amino acids sequences in respectively represent conserved transmembrane domains from TMI to VI. The blue and green lines respectively reveal
inside and outside membrane of AcOR11 protein positions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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results, as antennae are the primary sensory organ in honeybees and
contain numerous odorant receptors (Akers and Getz, 1992; Joerges
et al., 1997). Furthermore, this result is consistent with those published
previously (Robertson and Wanner, 2006). In this study, we detected
the expression pattern of AcOr11 gene in drone brains under different
sexual developmental stages and physiological statuses. Our results
clearly indicated that the process of sexual development of honeybee
drones strongly effects the expression of AcOr11 in brains. Expression of
AcOr11 in brains of mature drones was significantly higher than those
of immature drones, whereas there was no difference in antennae be-
tween immature and mature drones (Fig. 4b). Both the antennal lobes
(AL, the first synaptic processing station), and the mushroom bodies
(MB, the multi-sensory integration centers) are the main olfactory brain
regions of insects (Szyszka, 2005). The AL is enriched with the terminal
axons of odorant receptor neurons (ORNs) and the glomeruli in olfac-
tory sensory neurons (OSNs) (Gao and Chess, 1999; Mombaerts, 1999;
Hill et al., 2002; Forêt and Maleszka, 2006). It has been reported that
the olfactory glomeruli in young honeybee brains are not well devel-
oped, and their volume increases significantly with age (Fahrbach and
Robinson, 1995). Therefore, it was hypothesized that the immature
drone brains (4 day old drones) were not fully developed, resulting in
reduced expression of the AcOr11 gene in their brains, therefore re-
pressing their mating behavior. The flights of sexually immature drones
are generally orientation flights rather mating flights (Graham, 2015).

Moreover, it was observed that the expression of AcOr11 in brains of
flying mature drones was significantly higher than those of the crawling
mature drones, but was not different in the antenna (Fig. 4c). In many
insects, a number of olfactory neurons express sex pheromone receptors
in order to increase sensitivity to respond pheromone in the AL
(Graham, 2015), Their function is transferring odor molecules to the
sensory receptors distributed on the dendritic. This study indicated that
physiological statuses of honeybee drones also correlated with AcOr11
gene expression in brains, reflecting that daily mating flights of mature
drones possibly perform as an important role in improving the mating
behavior of honeybee drones by regulating the expression of AcOr11 in
drone brains. Furthermore, there was no significant difference between
flying and crawling immature drone brains, which is likely due to the
fact that main outside activity are orientation flights, rather mating
flights in immature drones in nature.

Interestingly, expression of AcOr11 was opposite in antenna com-
pared to that of brains. Expression in the antennae of the flying drones
was dramatically higher than those of the crawling drones in the im-
mature stage (Fig. 4d). It is unclear how orientation flying activity up-
regulates AcOr11 gene expression in antennae of immature drones.
Perhaps the AcOr11 is employed by immature drones to detect en-
vironmental scents for orientation flying, since the olfactory nervous
system of young honeybees is most sensitive to environmental odors
from inside and outside of their hive (Masson et al., 1993; Sandoz and
Menzel, 2001). This is consistent with other studies reporting that many
insects utilize floral scents and other environmental odors for orienta-
tion (Phelan and Baker, 1987; Hern and Dorn, 1999; Anton et al.,
2007). For mature drones, Villar et al. (2015) reported that AmOr11 in
drone antennae is correlated with mating behavior in response to 9-
ODA stimulation. In Fig. 4d, the expression of AcOr11 in mature drone
antennae was not affected by physiological status. This could be ex-
plained by the fact that Ors expression in mature drone antennae tends
to be stable and increases only when stimulated by QMPs, rather than in
daily flights. Nevertheless, this phenomenon requires further in-
vestigation.

Furthermore, the results of AcOr2 also showed a similar expression
pattern in drone brains (Fig. 5a) and antennae (Fig. 5b) at different
physiological statuses to that of AcOr11. As the OR2 is the co-receptor
of OR11 in honeybees (Wanner et al., 2007), these data serve as addi-
tional confirmation of our observations AcOr11.

In summary, AcOr11 from the antennae of A. cerana was cloned, and
expression patterns were analyzed in drones of different stages of sexual
maturity and physiological statuses. The expression of AcOr11 in drone
brains was closely correlated with both sexual development and phy-
siological status. This suggests that AcOr11 in brain may have some
biological functions involved in the progression to sexual maturity and
mating behavior. This study provides an insight into the molecular basis
underlying mating flights of A. cerana drones.
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