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Impacts of Apis cerana gut microbes on Nosema ceranae proliferation in
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Qiang Huanga,b�
aHoney Bee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China; bJiangxi Province Key Laboratory of
Honey Bee Biology and Beekeeping, Nanchang, P.R. China

ABSTRACT
The gut microbiota is a complex ecosystem including both beneficial and harmful microbes,
which is essential for the metabolism, health and immunity of the host. Fecal microbiota
transplantation (FMT) is an effective treatment for diseases of altered intestinal microbiota.
Nosema ceranae, a parasitic fungus in intestinal epithelial cells, destroys the honey bee’s gut
integrity. This study provided the first report that the number of spores was significantly
lower in the native host (Asian honey bee) compared with the novel host (European honey
bee). The treatment effect of FMT was denoted by feeding the gut tissue solution from the
original host to the new host. The results showed that FMT did not significantly decrease
the spore load but enhanced the expression levels of immune genes in the Toll pathway.
Our data confirmed that the native host inhibits N. ceranae proliferation. Our data suggest
microbes of the native host could be an alternative approach to treat the parasite in the
novel host.
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Introduction

Nosema ceranae is an obligatory intracellular parasite
of honey bees, and its original host is the Asian
honey bee (Apis cerana) (Burri et al., 2006; Feng
et al., 2014; Sinpoo et al., 2018). N. ceranae has suc-
cessfully infected the European honey bee A. melli-
fera, where high virulence has been reported
(BenVau & Nieh, 2017; Paxton et al., 2007). Honey
bees showed a decline in foraging activity ahead of
time, reduced life, and suppressed immune response
after being infected by N. ceranae (Goblirsch et al.,
2013; Mayack & Naug, 2009; McDonnell et al., 2013;
Naug & Gibbs, 2009). N. ceranae drives colony loss in
Spain (Ma~nes, 2017).

The gut microbiota is emerging as a key player gov-
erning host health, which affects host metabolism,
immune system modulation and disease resistance
(Harris et al., 2012; Heintz-Buschart & Wilmes, 2018). For
instance, Bombus terrestris treated with antibiotics or
aseptic showed increased susceptibility to the trypano-
somatid parasite Crithidia bombi (Koch & Schmid-
Hempel, 2011). It suggests that the normal microbiota
has an inhibitory effect on pathogenic microorganisms.

In addition, some specific gut microbes could effectively
suppress the pathogens (Rangan & Hang, 2017).
Escherichia coli Nissle1917 competitively reduces
Salmonella colonization (Deriu et al., 2013). Enterococcus
fecalis prevents Staphylococcus aureus and Salmonella
enterica infections in worms (Caenorhabditis elegans)
(Deriu et al., 2013; King et al., 2016). Five bacterial spe-
cies groups (Snodgrassella alvi, Gilliamella apicola,
Lactobacillus Firm-4, Lactobacillus Firm-5 and
Bifidobacterium asteroides) constitute mainly the gut
microbiota of Apis mellifera. Four bacterial species
groups (Bifidobacterium, Snodgrassella alvi, Gilliamella
apicola, and Lactobacillus) are considered to be the
major gut bacteria of Apis cerana (Guo et al., 2015).
Lactobacillus and Bifidobacterium could inhibit the
growth of Paenibacillus larvae in honey bee larvae
(Forsgren et al., 2010). Honey bees with a healthy gut
microbiota showed significantly higher survival com-
pared with dysbiosis ones after virus infection (Dosch
et al., 2021).

Four immune pathways (Toll, Imd, JNK, and JAK/
STAT) in A. mellifera respond to bacteria and Nosema
infection (Ant�unez et al., 2009; Evans et al., 2006).

CONTACT Qiang Huang qiang-huang@live.com
†Co-first author.�These authors contributed equally to this work.
Z.W. collected field data, carried out statistical analyses, participated in the design of the study and drafted the manuscript; X.W. carried out the
molecular lab work, participated in data analysis; Q.H. critically revised the manuscript and proved financial support; L.Z, Z.Z. and W.Y. conceived of
the study, designed the study, coordinated the study and helped draft the manuscript. All authors gave final approval for publication and agree to
be held accountable for the work performed therein.

Supplemental data for this article can be accessed here https://doi.org/10.1080/00218839.2022.2047422.

� 2022 International Bee Research Association

JOURNAL OF APICULTURAL RESEARCH
https://doi.org/10.1080/00218839.2022.2047422

http://crossmark.crossref.org/dialog/?doi=10.1080/00218839.2022.2047422&domain=pdf&date_stamp=2022-03-18
http://orcid.org/0000-0001-5528-5099
https://doi.org/10.1080/00218839.2022.2047422
https://doi.org/10.1080/00218839.2022.2047422
http://www.tandfonline.com


Honey bees showed suppressed immune response after
being infected by N. ceranae. But the Apis mellifera gut
microbiota can promote the expression of apidaecin
and hymenoptaecin (Kwong et al., 2017), two antimicro-
bial peptides, and the gut bacteria Snodgrassella alvi
and Frischella perrara can activate the host’s immune
system (Emery et al., 2017). In addition, A. cerana
enlisted a higher immune response and fewer offspring
spores compared with A. mellifera (Sinpoo et al., 2018).

A. mellifera and A. cerana are two sister honey
bee species (Lourenço et al., 2005). Although the
two bee species are in close contact, they main-
tained their unique microbiome characteristics
(Casteels et al., 1989). The gut microbial composition
of honey bees based on 16S rRNA gene sequencing
showed that A. mellifera has relatively fewer micro-
biota in the midgut compared with A. cerana. A. mel-
lifera has a lower level of Lactobacillus in the midgut
(Ahn et al., 2012). In addition, the contribution of
non-culturable and other bacteria could not be
neglected in host health (Kwong & Moran, 2016)

Fecal microbiota transplantation (FMT) is a method
for the treatment of diseases caused by intestinal
microbial defects, that transfer stool from a “healthy”
donor to a recipient (Vindigni & Surawicz, 2017). This
provides conditions and values for exchange host col-
onization induced by internal bacteria in the labora-
tory (Ant�unez et al., 2009). In A. cerana, the workers
inoculated with intestinal bacteria were more resistant
to N. ceranae than germ-free gut microbiota deficient
workers (Wu et al., 2020). The life of older African tur-
quoise killifish (Nothobranchius furzeri) can be
increased by transplanting the gut microbes of
younger fish to older fish (Smith et al., 2017).

We hypothesize that the gut microbes in native
hosts might be involved in inhibiting parasite prolif-
eration. To verify the hypothesis, we first proved a
smaller number of spores can be found in native
hosts compared with novel hosts in natural condi-
tions. Then the gut microbe of the native host was
transferred to the novel host, followed by the para-
site inoculation, to quantify the parasite offspring
spores and host immune responses.

Materials and methods

Quantification of N. ceranae spores in
natural condition

The two honey bee species (A. mellifera and A. cerana)
were collected from the experimental apiaries in the
Honey bee Research Institute, Jiangxi Agricultural
University (28.77� N, 115.83� E). For each colony, 30
foragers with pollen loads were captured at the hive
entrance (Kaneko et al., 2010). In total, 1140 foragers
were collected from 19A. mellifera and 19A. cerana
colonies. N. ceranae spores were isolated from honey

bee midgut tissues. Spores were purified using Percoll
(Supplementary Material) (Cornman et al., 2009). The
parasite species was determined using N. ceranae spe-
cific PCR method (Fries et al., 2013). The spore load
was counted using 400� optical microscope (Nikon,
Tokyo, Japan) and 25� 16 type hemacytometer
(Qiujing, Shanghai, China). The method of counting the
spore number is described in Supplementary Materials.

Gut tissue solution preparation

Sixteen A. cerana foragers with pollen loads were
captured at the hive entrance (Kaneko et al., 2010).
The midguts were dissected, pooled and homogen-
ized in 1ml PBS. The solution was centrifuged at
1000 g for 10min. The supernatant was removed to
collect the pellet (Wu et al., 2020), which was again
resuspended in 1ml PBS. The suspension was diluted
in 24ml 50% sterile sucrose solution.

N. ceranae spore and gut tissue inoculation

Sealed brood combs from an A. mellifera colony were
kept in the incubator with 34 ± 1 �C and 50% humidity
until the emergence of young workers. The newly
emerged (< 24 h) workers were randomly distributed
into rearing cups, with 40 bees per cup. Three experi-
mental groups and an additional blank group were
constructed. The blank group of workers received no
treatment. The honey bees inoculated with gut tissue
solution was defined as Group I. The honey bees ino-
culated with gut tissue solution with 105 N. ceranae
spores were defined as Group II. The honey bees ino-
culated with 105 N. ceranae spores without gut tissue
were defined as Group III. The blank group of workers
was Group IV that received no treatment
(Supplementary Table S1). The purified spores were
diluted to a concentration of 5.0� l04 spores/ll in
sucrose solution. The workers of Group II and Group III
were inoculated with 2 ll spores sucrose solution
alone (Fries et al., 2013). During 14 days experimental
period, sucrose solution was the only food ad libitum.
The number of dead bees was recorded and removed
daily. Ten bees per cup were collected to count the
spore load at 14 days post infection (dpi). The remain-
ing bees were used for RNA extraction to quantify the
expression level of immune genes.

The expression levels of immune genes

The midgut of individual bees was dissected. Two mid-
gut tissues were pooled for total RNA extraction using
TRIzol (Invitrogen, USA). RNA reverse transcription and
Real-time quantitative PCR were carried out using
Reverse Transcription Kit and TB Green Premix Ex
TaqTM II (Takara). The 20ll reaction system was
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composed of 10ll TB Green Fast qPCR Mix, ROX
Reference Dye (0.4ml), upstream primer (0.8ml), down-
stream primer (0.8ml), cDNA (2ml) and ddH2O (6ml).
The PCR protocol was as follows: Initial denaturation at
94 �C for 30 sec; denaturation at 94 �C for 5 sec and 40
cycles for elongation at 60 �C for 60 sec. A total of 22
immune genes (Evans, 2006) and 2 reference genes
(Liu et al., 2020; Van Hiel et al., 2009) were quantified
(Supplementary Table S2).

Data analysis and statistics

All data were tested for normal distribution with the
Kolmogorov–Smirnov test. Data were analyzed for nor-
mal distribution. Parametric tests were used for normally
distributed data, otherwise, non-parametric statistics
were applied. The spore load variance between the-two
honey bee species in natural conditions was analysed
with the non-parametric Mann-Whitney U-test. The
spore load variance among the three treatment groups
was analysed with one-way ANOVA test. The amplifica-
tion efficiency for each qPCR reaction was calculated
based on the strength of the fluorescence for each cycle
using qPCR package, R (Pabinger et al., 2014; Spiess &
Spiess, 2018). The average amplification efficiency of all
reactions in a gene was used to calculate the relative
gene expression. The relative expression of immune
genes among the three groups was analysed with the
Kruskal-Wallis test. All statistical analysis was performed
using SPSS version 26.

Results

Spore loads in natural condition

An average of 5,651� 107 spores per bee were
counted in A. cerana, whereas 2,686� 108 spores

were found in A. mellifera foragers. After normalizing
the body weight, a significantly higher number of
spores was found in the honey bee A. mellifera com-
pared with A. cerana (Mann Whitney U-test: U¼ 41;
P< 0.001, Figure 1).

Effect of gut tissue solution on N. ceranae
proliferation in A. mellifera

At 14 dpi, 10 bees from each group were collected
to count the spores. The number of spores in Group
III (3.431� 106 ± 6.452� 105) was higher than Group
I (2.594� 106 ± 8.134� 105) and Group II
(2.538� 106 ± 6.755� 105). Overall, the variance of
spores was not statistically significant among the
three Groups (ANOVA, F (2,27) ¼ 0.848, P> 0.05)
(Figure 2).

Effect of gut tissue solution and N. ceranae
inoculation on immune gene expression

Among the 22 immune genes in the three experi-
mental groups (Group I, II, III), three genes were sig-
nificantly upregulated in bees provided with gut
tissue solution (Figure 3). The relative expression
level of AmPPo was significantly higher in Group II
than Group I. The relative expression level of dorsal-
1 was again significantly higher in Group II than
Group III. For the gene Apidaecin, the relative expres-
sion level in group III was significantly lower than
Group I and group II.

Compared with the control group, the relative
expression level of dorsal-1 was significantly up-regu-
lated in Group I (P< 0.05) and Group II (P< 0.05),
and up-regulated in Group III (P> 0.05). The relative
expression level of Apidaecin was again significantly
up-regulated in Group I (P< 0.05) and Group II

Figure 1. The number of N. ceranae spores found in the
two honey bee species. The number of spores was signifi-
cantly higher in the honey bee A. mellifera compared with
A. cerana (Mann Whitney U-test: U¼ 41; P < 0.001).���represents the significant level at P< 0.001.

Figure 2. Effect of gut tissue solution on spore load of A.
mellifera. On average, Group III showed the highest number
of spores (3.431� 106 ± 6.452� 105). Even though statistic-
ally not significant compared with Group I and Group II.
Bars indicate mean values ± standard deviation. Group I: Gut
tissue solution, Group II: Gut tissue solutionþ 105 N. ceranae,
Group III: 105 N. ceranae.

JOURNAL OF APICULTURAL RESEARCH 3

https://doi.org/10.1080/00218839.2022.2047422


(P< 0.05), and up-regulated in Group III (P> 0.05).
The relative expression level of AmPPo was signifi-
cantly down-regulated in Group IV than Group II
(P< 0.05) and Group III (P< 0.05), down-regulated in
Group I (P> 0.05).

Discussion

Our investigation verifies the hypothesis that the
parasite load differs between A. cerana and A. melli-
fera under natural conditions. Artificial inoculation of
N. ceranae in two honey bee species also indicated
the native host defends N. ceranae infection more
effectively by a stronger immune response compared
with the novel host (Sinpoo et al., 2018). A balance
of intestinal microbial flora plays a vital role in host
health, it depends on the composition of intestinal
microflora and the bidirectional interactions between
the host immune system and the microbiota (Cotter,
2011). In our data, the spores load of Group II was
26% lower than Group III, even though statistically
not significant. This result may be related to the acti-
vation of the A. mellifera immune response by the
gut tissue solution.

The Toll pathway of honey bees and Drosophila
play critical roles in sensing infection by fungi, and
trigger a series of follow-up reactions (Beutler, 2004;
Evans et al., 2006; Li et al., 2018). The interactions
between gut microbiota and the toll-like receptors
(TLRs) help maintain the homeostasis of the host
immune system (Yiu et al., 2017). For the three
immune genes (AmPPo, dorsal-1 and Apidaecin), the
expression levels were higher in the treatment
groups than Group IV. Our results clearly demon-
strate that feeding gut tissue and N. ceranae infec-
tion upregulate the expression levels of immune

genes. But the three immune genes expression levels
of Group III were lower than Group II. This phenom-
enon may be related to the immunosuppression of
N. ceranae on the host (Ant�unez et al., 2009;
Chaimanee et al., 2012), but it cannot be ruled out
that there are not enough gut microbes in the mid-
gut of Group III to promote the expression of host
immune genes. The change in upstream dorsal-1
gene expression initiates responses to the down-
stream genes AmPPo and Apidaecin in the Toll
immune pathway. Insect melanogenesis is an import-
ant defense against pathogenic microorganism
(Eleftherianos & Revenis, 2011). Phenoloxidase (PO) is
the most important enzyme in melanin biosynthesis
(Sussman, 1949). AmPPo is involved in the melanisa-
tion immune response by regulating the activity of
PO (Lourenço et al., 2005). Apidaecin is in the class
of proline rich antimicrobial peptides, and plays an
important role in resisting microbial infections
(Casteels et al., 1989).

A. mellifera and A. cerana are two sister honey
bee species (Liu et al., 2014). Although the two bee
species are in close contact, they maintained their
unique microbiome characteristics (Ellegaard et al.,
2020). Gut microbial composition of honey bees
based on 16S rRNA gene sequencing showed that A.
mellifera and A. cerana have 97% similarity (Evans
et al., 2006). There may be more gut microbiota col-
onization derived from the gut tissue solution. The
colonizing microbiota required validation by gen-
ome sequencing.

A. cerana is the original host of N. ceranae, and has
evolved tolerance toward microspores compared with
A. mellifera in both natural and experimental condi-
tions (Fries et al., 1996; Sinpoo et al., 2018). Among
the three immune genes we considered, the gene

Figure 3. The relative gene expression level of AmPPo, dorsal-1 and Apidaecin among the three groups. Overall, the feeding
of gut tissue solution enhanced the expression level of the three genes. The relative expression was analyzed using the non-
parametric Kruskal-Wallis test. Data are represented as lower quartile, median and upper quartile (boxes), and minimum and
maximum ranges (whiskers). Group I: Gut tissue solution, Group II: Gut tissue solutionþ 105 N. ceranae, Goup III: 105 N. cera-
nae. The different letters indicated significant differences, P < 0.05.
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expression of Group III was always maintained at a
low level, but the gut tissue solution changed this
situation. The gene expression of dorsal-1 and
Apidaecin in Group I and Group II is higher than Group
III, but gut tissue solution did not elevate expression
levels of AmPPo. The initial inoculation dose of spores
affected the melanin biosynthesis. This result may pro-
vide good proof for further interpreting the competi-
tive role of A. cerana gut bacteria and spores.

Nosemosis is an infectious disease caused by
Nosema apis and N. ceranae. But the effects of N.
ceranae on bee colony health have been reported to
be more severe compared to infections by N. apis
(Chaimanee et al., 2010; Chen et al., 2008; Fries et al.,
2006). Our results for the first time the parasite load
difference between A. cerana and A. mellifera under
natural conditions. However, more survey results
are required to draw definitive conclusions.
Transplantation of gut microbes could be an alterna-
tive method to treat gut parasites.

Data accessibility

All the data generated and used in our study are included
in the electronic supplementary material: table S1 includes
the spore inoculation quantity and food type, table S2
includes the primer sequence of 22 immune genes and
two reference genes, table S3 includes the spore loads in
natural condition, table S4 includes the spore loads by
treatment, table S5 includes the average expression level
of 22 immune-related genes in each group and table S6
includes the expression level of 22 immune-related genes
in each honey bee.
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