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Significance

A major cause of colony failure in 
honey bees is Nosema, a parasitic 
relative of fungi that causes 
winter mortality. A strain of a 
specialized honey bee gut 
symbiont was genetically 
engineered to activate the RNA 
interference system of Nosema to 
specifically suppress parasite 
genes essential to the infection. 
The engineered symbionts 
colonized bee guts, inhibited 
Nosema proliferation, and 
increased the survivorship of 
bees challenged with parasite 
infection. Engineered symbionts 
were successfully established in 
bees of different ages, including 
those with established gut 
microbiota, and were transmitted 
from colonized bees to 
previously uncolonized 
neighboring bees. Genetically 
engineered gut symbionts 
therefore have the potential to 
provide long-term colony-level 
protection against one or several 
parasite species.
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Honey bees (Apis mellifera) are critical agricultural pollinators as well as model organ-
isms for research on development, behavior, memory, and learning. The parasite Nosema 
ceranae, a common cause of honey bee colony collapse, has developed resistance to 
small-molecule therapeutics. An alternative long-term strategy to combat Nosema infec-
tion is therefore urgently needed, with synthetic biology offering a potential solution. 
Honey bees harbor specialized bacterial gut symbionts that are transmitted within 
hives. Previously, these have been engineered to inhibit ectoparasitic mites by express-
ing double-stranded RNA (dsRNA) targeting essential mite genes, via activation of the 
mite RNA interference (RNAi) pathway. In this study, we engineered a honey bee gut 
symbiont to express dsRNA targeting essential genes of N. ceranae via the parasite’s own 
RNAi machinery. The engineered symbiont sharply reduced Nosema proliferation and 
improved bee survival following the parasite challenge. This protection was observed in 
both newly emerged and older forager bees. Furthermore, engineered symbionts were 
transmitted among cohoused bees, suggesting that introducing engineered symbionts 
to hives could result in colony-level protection.

honey bee | symbiont | parasite control | microsporidian | Snodgrassella alvi

Pollination is a central ecosystem service, substantially increasing the proportion of flowers 
developing into fruit and seeds (1, 2). The honey bee is the most abundant commercial 
pollinator and is essential for the food supply and the agricultural economy (3, 4). Honey 
bee colony losses have provoked severe concern for food security (5, 6). During warm 
months, old or weak honey bees leave the hive, thereby limiting transmission of pathogens 
to healthy younger honey bees and maintaining the colony’s strength (7). However, in 
winter, the queen stops laying eggs, and resident bees cluster together to keep warm in 
the hive. This behavior enables pathogens to proliferate, often resulting in the collapse of 
colonies. Winter losses account for most colony failures (8). However, winter also provides 
an ideal timeframe to eliminate the pathogens without interfering with larvae and pupae, 
provided an effective treatment is available.

The primary drivers of colony failure are the ectoparasitic mite Varroa destructor and 
the intracellular parasite Nosema ceranae (9, 10). N. ceranae is a single-cell microsporidian 
parasite infecting honey bee midgut epithelial cells. Infections start from ingesting 
spore-contaminated food (11). The spores germinate and extrude polar tubes, transporting 
the sporoplasm into gut epithelial cells to initiate proliferation (12). Proliferation lasts 
approximately 4 d, when infected cells burst, releasing progeny spores into the gut lumen 
(13). N. ceranae infection suppresses the honey bee’s immune response, impairs flight 
navigation, and shortens life span (14–17).

N. ceranae control is challenging because it has developed resistance to fumagillin, the 
only registered antimicrobial to treat nosemosis (18). Synthetic biology offers a potential 
alternative solution through RNA interference (RNAi). Accordingly, N. ceranae’s native 
RNAi machinery can be hijacked to prevent the expression of virulence genes. Previous 
experiments using RNAi to knock down the expression of targeted genes have shown that 
genes involved in ATP transport, microRNA maturation, and attachment to the host cells 
are essential to the success of the infection (19–21). Polar tube proteins (PTPs), for exam-
ple, are essential for transporting the sporoplasm into host cells, and N. ceranae has five 
PTP genes (PTP1 ~ PTP5) (22, 23). Another protein essential for successful microspo-
ridian infection is sporoplasm surface protein (SSP), which attracts the host mitochondria 
needed to provide a supply of ATP during parasite proliferation. Disrupting SSP inhibits 
the production of progeny spores in another microsporidian, Encephalitozoon hellem (24).

Honey bees maintain core gut symbionts colonizing distinct niches within the bee 
hindgut (25, 26). Recently, an engineered strain of the bee symbiont Snodgrassella alvi, 
named S. alvi wkB2:pDS-VAR, was used to deliver double-stranded RNA (dsRNA) that 
targeted the mite V. destructor through the mite’s own RNAi pathway, resulting in mite 
death (27). In this study, we engineered S. alvi to produce S. alvi wkB2:pDS-Nosema, 
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expressing dsRNA targeting the essential genes (PTP1 and SSP) 
of the parasite N. ceranae. This engineered gut symbiont effectively 
protected both newly emerged bees and older (forager) bees and 
substantially improved bee survival. Furthermore, the engineered 
gut symbiont dispersed among cohoused bees. Together, these 
results suggest a promising strategy for combating honey bee par-
asites and thereby improving the winter survival of hives.

Results

Engineered Symbionts Reduced Parasite Proliferation and 
Improved Survival in Newly Emerged Honey Bees. We first 
evaluated the ability of the engineered gut symbiont S. alvi 
wkB2:pBTK570 to colonize and persist in the honey bee gut. 
Inoculation with approximately 1 × 106 cells per microliter of 
sucrose solution allowed stable colonization of the engineered 
symbionts in newly emerged honey bees. Antibiotic selection 
substantially boosted symbiont colonization, increasing 
the numbers of colony-forming units (CFUs) in plated gut 
homogenate on selective media (SI Appendix, Fig. S1).

We then engineered S. alvi wkB2 to express dsRNA designed 
to knock down the expression of two N. ceranae genes (SSP and 
PTP1) encoding proteins essential for host infection (SI Appendix, 
Figs. S2 and S3). Another engineered strain, S. alvi wkB2:pDS-GFP, 
expressed dsRNA with no homology to Nosema or bee genes and 
was used as a control for nonspecific effects of dsRNA on N. 
ceranae infection (Table 1). We carried out three experiments, 
using bees from different hives, to test whether the engineered 
strains have an effect on the ability of N. ceranae infection (Fig. 1).

In the first experiment, we inoculated newly emerged bees with 
the engineered strain, S. alvi wkB2:pDS-Nosema, and with S. alvi 
wkB2:pDS-GFP (Fig. 1A). The third group of bees received 
sucrose solution only. The sucrose group determined any inhibi-
tory effect of the S. alvi wkB2:pDS-Nosema on the infection.  
S. alvi wkB2:pDS-GFP further determined that the inhibitory 
effect originated from the random or designated dsRNA. Five days 
later, we inoculated with the parasite N. ceranae. Survival was not 
significantly different between wkB2:pDS-Nosema and wkB2: 
pDS-GFP groups (log-rank test, adjusted P > 0.05). However, these 
two groups showed significantly higher survival than that of the 
honey bees in the sucrose group (log-rank test, adjusted P < 0.001, 
Fig. 2A).

Colonization with the engineered symbiont wkB2:pDS-Nosema 
effectively suppressed parasite proliferation as measured by spore 
counts. Bees in the wkB2:pDS-Nosema group showed the least 
spores, followed by those in the wkB2:pDS-GFP group. Bees 
without symbionts showed the most spores (Kruskal–Wallis test, 
adjusted P < 0.001, Fig. 2B).

We validated colonization by engineered symbionts by quan-
tifying CFUs on selective media. The engineered symbiont S. alvi 
wkB2:pDS-Nosema and S. alvi wkB2:pDS-GFP colonized equally 
well, with an inoculation rate of 97.5% (Wilcoxon test, P = 0.24, 
Fig. 2C).

In the second experiment, we also tested for a protective effect 
of wild-type S. alvi on bees, by including a fourth treatment group, 
nonengineered S. alvi wkB2 (Fig. 1B). In this experiment, bees in 
the S. alvi wkB2:pDS-Nosema group achieved the highest survival, 
and the sucrose group showed the lowest survival. The bees in the 
sucrose group showed lower survival than that of bees in the 
wkB2:pDS-Nosema (log-rank test, adjusted P < 0.001), 
wkB2:pDS-GFP (log-rank test, adjusted P < 0.001), and wkB2 
(log-rank test, adjusted P < 0.001) groups (Fig. 3A). No significant 
difference in survival was found among the wkB2:pDS-Nosema, 
wkB2:pDS-GFP, and wkB2 groups. Additionally, spore load dif-
fered among the four groups (Kruskal–Wallis test, adjusted  
P < 0.01, Fig. 3B). Bees in the S. alvi wkB2:pDS-Nosema group 
showed fewer spores than those in the S. alvi wkB2:pDS-GFP 
(Wilcoxon rank-sum test, adjusted P < 0.001), S. alvi wkB2 
(Wilcoxon rank-sum test, adjusted P < 0.001), and the sugar 
groups (Wilcoxon rank-sum test, adjusted P < 0.001). Spore loads 
were not significantly different between the S. alvi wkB2:pDS-GFP 
and S. alvi wkB2 groups or between S. alvi wkB2 and sugar 
groups. However, bees in the wkB2:pDS-GFP group showed sig-
nificantly fewer spores than those in the sugar group (Wilcoxon 
rank-sum test, adjusted P < 0.05).

Engineered Symbionts Protect Forager Honey Bees and Are 
Transmitted to Cohoused Bees. Once established in individual 
workers, engineered symbionts may colonize and protect older 
bees, potentially conferring colony-level protection. First, we 
tested whether engineered symbionts could colonize older bees 
that already have an established gut microbiota. Following the 
inoculation of foragers with the engineered symbionts, the 
proportion of colonization was 50% on day 4 and 62.5% on day 
8. However, antibiotic selection increased the colonization rate 
to 100% and 87.5% on day 4 and day 8 (SI Appendix, Table S3). 
There was a trend of higher CFU levels with antibiotic selection, 
but the difference was not statistically significant (SI Appendix, 
Fig. S4).

We also inoculated older honey bees, already possessing an estab-
lished microbiome, with the engineered S. alvi wkB2:pDS-Nosema 
or with S. alvi wkB2:pDS-GFP, followed by exposure to N. ceranae 
spores. S. alvi wkB2:pDS-Nosema treatment substantially sup-
pressed the spore load compared with the S. alvi wkB2:pDS-GFP 
group or the sucrose group, and the foragers without symbionts 
showed the highest spore loads (Kruskal–Wallis test, adjusted P < 
0.05, Fig. 4A).

To explore whether the engineered symbiont might be able to 
spread within a bee colony, we tested whether transmission could 
occur among bees cohoused in the same rearing cups. When bees 
inoculated with the engineered symbiont and bees lacking symbi-
onts were together, the engineered symbionts were transmitted to 
the uninoculated bees. After 3 d of cohousing, the symbionts had 
colonized 60% of previously uninoculated bees, and similar CFU 
values were observed for inoculated honey bees and those colonized 
through bee-to-bee transfer (Wilcoxon test, P = 0.204, Fig. 4B).

Table 1. Three plasmids introduced into honey bee symbiont Snodgrassella alvi
Symbiont Plasmid Function Target gene Accession ID Reference

S. alvi wkB2 pBTK570 Resistant to spectinomycin NA 110615 (28)

S. alvi wkB2 pDS-GFP Resistant to spectinomycin, and 
expressing dsRNA

GFP 183129 (27)

S. alvi wkB2 pDS-Nosema Resistant to spectinomycin, and 
expressing dsRNA

SSP (G9O61_00g011170)
PTP1 (G9O61_00g021140)

NA This study

All the three plasmids were spectinomycin resistant. pDS-GFP delivers dsRNA targeting GFP, which serves as a foreign dsRNA control. pDS-Nosema provides dsRNA targeting the N. ceranae 
genes. pBTK570 does not deliver dsRNA.D
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Discussion

The exploitation of RNAi machinery as a strategy to cause pests 
to self-destruct has shown promise in several systems with agri-
cultural relevance (29–32). Such an approach circumvents the 
ecological destruction associated with broad-range chemical pes-
ticides. For insect pests of crops, dsRNA targeting essential pest 
genes has been shown to be feasible in beetles, moths, stinkbugs, 
aphids, and other groups (33–36). In honey bees, orally delivered 
dsRNA can result in Varroa mite death, and limit mortality of 
bees exposed to virus, suggesting that the dsRNA can enter and 
circulate in the bee hemolymph (37–39). The central challenge 
for RNAi-based strategies is the instability of RNA in the envi-
ronment and the expense of continually providing exogenous 

sources of dsRNA. For plant-feeding insects or other eukaryotic 
parasites, a potential, though costly, solution is to engineer the 
crop species to constitutively produce dsRNA. An alternative 
approach is to engineer a symbiotic bacterium to produce dsRNA 
targeted toward the pest species (40, 41), and this approach has 
shown promise in controlling harmful viruses and mites (27). We 
developed this symbiont-mediated RNAi approach for the micro-
sporidian N. ceranae, a major eukaryotic parasite of honey bees.

Microsporidia, a group of obligate intracellular animal parasites, 
are close relatives of fungi (42). Microsporidian infection has been 
exceptionally damaging in apiculture and in the silk and shrimp 
industries (10, 43, 44). Protected by their spore wall, these para-
sites remain infective in harsh environments (45, 46). RNAi 
knockdown has previously been used to identify genes essential 

Fig. 1. Experimental schemes for testing the effects of engineered gut symbionts (Snodgrassella alvi) on the susceptibility of honey bees to infection by Nosema 
ceranae. In each case, S. alvi treatments were on day 1. (A) N. ceranae inoculation was on day 6; samples for evaluating engineered symbiont colonization were 
taken on day 9, and samples for N. ceranae proliferation were taken on day 12. (B) Similar to A, but a nonengineered S. alvi treatment was included, N. ceranae 
inoculation was on day 3, and samples for N. ceranae proliferation were taken on day 9. (C) Similar to B, except older forager bees were used, the nonengineered 
S. alvi treatment was not included. Each experiment used bees from a different hive.

Fig. 2. The impact of the engineered gut symbionts on honey bee survival and N. ceranae proliferation. (A) Bee survival following challenge with N. ceranae. 
The bees in the wkB2:pDS-Nosema (N = 61) and wkB2:pDS-GFP (N = 57) groups showed higher survival than that of bees in the sugar group (N = 71) (log-rank 
sum test, adjusted P < 0.05, Fig. 2). (B) Spore loads (log2 transformed) in the three treatment groups. Honey bees inoculated with the engineered symbiont S. 
alvi wkB2:pDS-Nosema (N = 16) contained fewer spores than those with S. alvi wkB2:pDS-GFP (N = 18) (Wilcoxon rank-sum test, adjusted P < 0.05). Bees without 
symbionts (N = 12) showed significantly more spores than those inoculated with either S. alvi wkB2:pDS-Nosema (Wilcoxon rank-sum test, adjusted P < 0.001) 
or S. alvi wkB2:pDS-GFP (Wilcoxon rank-sum test, adjusted P < 0.05). (C) Colonization by two engineered S. alvi in honey bee gut. The two engineered symbionts 
colonized honey bee guts at similar rates on day three post-N. ceranae inoculation (N = 20 bees in each group; Wilcoxon test, P = 0.24). Box plots show high, low, 
and median values, with the lower and upper edges of each box denoting the first and third quartiles, respectively. Multiple comparisons were adjusted with 
FDR. * Indicates a significant level of 0.05; ** significance level of 0.01; *** significance level of 0.001.D
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for microsporidian proliferation in their host (19–21, 24, 47–50). 
However, a cost-effective approach to delivering interfering RNA 
to these organisms has not been available.

In this study, we used the bee microbiome toolkit to engineer 
a plasmid encoding dsRNA targeting essential genes of N. ceranae 
(23, 28). We established this plasmid in S. alvi wkB2, producing 
an engineered strain, S. alvi wkB2:pDS-Nosema. The plasmid 
expresses dsRNA targeting two essential N. ceranae genes, encoding 
SSP and polar tube protein 1 (PTP1). The polar tube is a special-
ized invasion apparatus that interacts with the host cell surface and 
transports the sporoplasm into the cells, as required for infection 
success (48, 51, 52). A previous study showed that inhibiting the 
expression of PTP3 through dsRNA delivered orally to bees sub-
stantially reduces N. ceranae spore loads (20). Our current study 
suggests that PTP1 also contributes to parasite proliferation. As 

an intracellular parasite, the energy required for proliferation is 
acquired from the host. SSP localizes on the surface of the sporo-
plasm, which interacts with PTP and host cell voltage–dependent 
anion channels, maintaining the proximity associated with the 
mitochondria (24). SSP and PTP1 are highly expressed early in 
infection, after which their expression levels decrease (53).

The previously demonstrated efficacy of symbiont-mediated 
RNAi against ectoparasitic mites suggested that the dsRNA 
entered the bee hemolymph and was then ingested by the mites. 
Our current results for N. ceranae support the entry of the acti-
vating RNA into N. ceranae cells, which themselves are intracel-
lular within bee epithelial cells. Previous studies suggested that 
orally feeding dsRNA and siRNA both can suppress Nosema 
proliferation (20, 21). However, it remained unclear whether 
dsRNA was processed to siRNA by the RNAi machinery of the 

Fig. 3. The second experiment testing engineered gut symbionts protecting newly emerged honey bees. (A) Bee survival following challenge with N. ceranae. 
The bees in the wkB2:pDS-Nosema (N = 51), wkB2:pDS-GFP (N = 51), and wkB2 (N = 52) groups showed significantly higher survival than those in the sugar group 
(N = 48) (log-rank sum test, adjusted P < 0.05, Fig. 3A). (B) Spore loads (log2 transformed) in the four treatment groups. The honey bees inoculated with the 
engineered symbiont S. alvi wkB2:pDS-Nosema (N = 24) produced significantly fewer spores than those of the bees in the wkB2:pDS-GFP (N = 18), wkB2 (N = 15), 
and the sugar groups (N = 9) (Kruskal–Wallis test, adjusted P < 0.001). Box plots show high, low, and median values, with the lower and upper edges of each box 
denoting the first and third quartiles, respectively. Multiple comparisons were adjusted with FDR. * Indicates a significant level of 0.05; ** significance level of 
0.01; *** significance level of 0.001.

Fig. 4. Spore load and symbiont dispersal in forager bees. (A) Numbers of N. ceranae spores in bees from the three treatment groups. S. alvi wkB2:pDS-Nosema 
(N = 6) showed significantly fewer spores than those in the S. alvi wkB2:pDS-GFP (N = 10) and sugar groups (N = 7) (Kruskal–Wallis test, adjusted P < 0.05).  
(B) Dispersal of engineered gut symbiont in cohoused bees (N = 12) exposed to inoculated bees (N = 10). Box plots show high, low, and median values, with the lower 
and upper edges of each box denoting the first and third quartiles, respectively. Multiple comparisons were adjusted with FDR. * Indicates a significant level of 0.05.D
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host or the parasite before separating the sporoplasm from the 
cytoplasm.

The nonengineered S. alvi wkB2 also conferred some protection 
from N. ceranae infection, as evidenced by a lower spore load and 
higher bee survival than those observed for bees in the sugar group. 
A previous study revealed a negative association between levels of 
S. alvi and N. ceranae spore load (54). In our study, bees inoculated 
with wkB2:pDS-GFP and wkB2 showed similar spore loads and 
survival, suggesting that the observed protection for these two 
treatments originates from colonization by S. alvi. Bees inoculated 
with S. alvi showed higher survival than those without symbionts, 
providing evidence that S. alvi itself protects bees from N. ceranae, 
a result consistent with previous findings that disrupting the nor-
mal microbiota increases Nosema susceptibility (55).

In commercial apiaries, antiparasite treatments are usually 
applied in spring and autumn and can be toxic to larvae and pupae 
(56–58). Caging the queens may be required depending on the 
treatment, and the colony suffers from losing newly emerged 
workers for at least 3 wk (59). In winter, hives should not be 
opened for treatments, because cold temperatures freeze the bees. 
In the current study, we found that engineered symbionts could 
colonize older bees and substantially suppress N. ceranae spore 
load. Additionally, the engineered symbionts dispersed and colo-
nized 60% of cohoused bees within 3 d, suggesting that they could 
spread within a hive. Together, these results raise the possibility 
that the introduction of engineered symbionts in late autumn 
could achieve parasite control over the winter, without interfering 
with larvae, pupae, and colony strength. Future field experiments, 
performed with a proper biocontainment strategy, have the poten-
tial to reveal the extent to which the engineered symbionts can 
increase winter survival in outdoor hives.

Materials and Methods

Parasite Infection Survey and Cultivation. Honey bee (Apis mellifera) hives 
were maintained at the University of Texas at Austin on a building rooftop. For each 
hive, the infection level was surveyed twice before the experiment (SI Appendix, 
Table S1). Sucrose solutions (2 µL) containing 1 × 105 spores were fed to each 
newly emerged honey bee. At 7 d postinfection, all infected honey bees were 
dissected to harvest spores, which were purified and refrigerated for the following 
inoculation assay. Detailed procedures are described in SI Appendix.

Honey Bee Gut Symbiont Engineering. The gut symbiont S. alvi, strain wkB2, 
was previously isolated and cultivated on Columbia Blood Agar Base with 5% 
sheep blood (60). The online tool SnapDragon (https://www.flyrnai.org/snap-
dragon) was used to design dsRNA targeting the genes encoding SSP and PTP1 
(SI Appendix, Figs. S2 and S3). Golden Gate Assembly was used to insert the 
synthesized gene fragment into the dsRNA expression plasmids (27, 61). Detailed 
procedures and dsRNA sequence are described in SI Appendix.

Suppressing Parasite Proliferation in Newly Emerged Honey Bees. The 
newly emerged honey bees were divided into three treatment groups, with 30 

honey bees per cup and two cups per treatment group. The bees were inoculated 
with engineered S. alvi wkB2:pDS-Nosema, S. alvi wkB2:pDS-GFP, and sucrose 
solution with 60 µg/mL spectinomycin. Then, the bees were individually inocu-
lated with 1 × 105 N. ceranae spores in 2 µL sucrose. The hindgut was dissected 
to quantify the CFU of S. alvi at 3 d postparasite inoculation. The midgut was 
dissected to count spores at 6 d post-parasite inoculation. The experiment was 
repeated using honey bees from a different colony (Fig. 1). Detailed procedures 
are described in SI Appendix.

Suppressing Parasite Proliferation in Older Honey Bees. Colonization of 
the engineered symbionts on adult bees was quantified with antibiotic selection 
(SI Appendix, Tables S2 and S3). Approximately 180 flying foragers were collected 
near the hive entrance using an insect net. Bees were inoculated with engineered 
S. alvi wkB2:pDS-Nosema, S. alvi wkB2:pDS-GFP, and sucrose solution using the 
shaking method (27). The bees were inoculated with 1 × 105 N. ceranae spores in 
2 µL sucrose solutions. On day 9, midguts were dissected to count the spore load 
in each bee (Fig. 1). When the spore load was very low, it could not be precisely 
estimated. Detailed procedures are described in SI Appendix.

Dispersal of the Engineered Gut Symbiont Transfer among Nestmates. 
Eighty newly emerged honey bees were collected and divided into four cups. Forty 
bees were marked with fluorescent color on the thorax and inoculated with the 
engineered symbiont. The remaining forty bees were fed with sucrose solution. 
At 2 d post engineered symbiont inoculation, bees were anesthetized with CO2. 
Ten bees with engineered symbionts and ten sucrose-fed bees were assigned to 
a new cup. At 5 dpi, all bees were dissected to measure CFU. Detailed procedures 
are described in SI Appendix.

Statistics

The persistence of plasmid in newly emerged honey bees was ana-
lyzed with the Kruskal–Wallis test implemented in R (version 
3.6.3) (62). The post-inoculation day and antibiotic selection were 
treated as independent variables, and the CFUs were the depend-
ent variable. The treatment groups were set as the independent 
variable, and the rearing cups were set as a random variable. The 
variance of the spore load among the treatment groups was ana-
lyzed with paired Wilcoxon rank-sum test, and multiple compar-
isons were adjusted for FDR. Survival was analyzed using 
Kaplan–Meier estimate in the survival package, adjusted for mul-
tiple comparisons with FDR, R (63).

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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